多中心全景的几何基础

F. Huang, Shou-Kang Wei, R. Klette
{"title":"多中心全景的几何基础","authors":"F. Huang, Shou-Kang Wei, R. Klette","doi":"10.1109/ICCV.2001.937566","DOIUrl":null,"url":null,"abstract":"This paper proposes polycentric panoramas as a general model of panoramic images. The model formalizes essential characteristics of panoramic geometry. It is able to describe a wide range of panoramic images, including those potentially of future interest, or previously introduced such as single-center, multi-perspective, or concentric panoramas. This paper presents geometrical fundamentals towards stereo applications based on sets of polycentric panoramas. We discuss the image acquisition model, epipolar geometry and a 3D reconstruction approach for this general model of polycentric panoramas. Our theorems on epipolar curve and 3D reconstruction hold for any pair of polycentric panoramas. Corollaries demonstrate that the proposed mathematical model clarifies the understanding and characterization of more specific models. Epipolar curves of special cases are illustrated on panoramic images acquired by a high resolution line-camera.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Geometrical fundamentals of polycentric panoramas\",\"authors\":\"F. Huang, Shou-Kang Wei, R. Klette\",\"doi\":\"10.1109/ICCV.2001.937566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes polycentric panoramas as a general model of panoramic images. The model formalizes essential characteristics of panoramic geometry. It is able to describe a wide range of panoramic images, including those potentially of future interest, or previously introduced such as single-center, multi-perspective, or concentric panoramas. This paper presents geometrical fundamentals towards stereo applications based on sets of polycentric panoramas. We discuss the image acquisition model, epipolar geometry and a 3D reconstruction approach for this general model of polycentric panoramas. Our theorems on epipolar curve and 3D reconstruction hold for any pair of polycentric panoramas. Corollaries demonstrate that the proposed mathematical model clarifies the understanding and characterization of more specific models. Epipolar curves of special cases are illustrated on panoramic images acquired by a high resolution line-camera.\",\"PeriodicalId\":429441,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2001.937566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文提出了多中心全景图作为全景图像的通用模型。该模型形式化了全景几何的基本特征。它能够描述广泛的全景图像,包括那些未来可能感兴趣的图像,或先前引入的单中心、多视角或同心全景。本文介绍了基于多中心全景集的立体应用的几何基础。我们讨论了图像采集模型,极几何和三维重建方法的一般模型的多中心全景。我们关于极线和三维重建的定理适用于任何一对多中心全景图。推论表明,所提出的数学模型澄清了对更具体模型的理解和表征。在高分辨率线相机拍摄的全景图像上,给出了特殊情况下的极线曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrical fundamentals of polycentric panoramas
This paper proposes polycentric panoramas as a general model of panoramic images. The model formalizes essential characteristics of panoramic geometry. It is able to describe a wide range of panoramic images, including those potentially of future interest, or previously introduced such as single-center, multi-perspective, or concentric panoramas. This paper presents geometrical fundamentals towards stereo applications based on sets of polycentric panoramas. We discuss the image acquisition model, epipolar geometry and a 3D reconstruction approach for this general model of polycentric panoramas. Our theorems on epipolar curve and 3D reconstruction hold for any pair of polycentric panoramas. Corollaries demonstrate that the proposed mathematical model clarifies the understanding and characterization of more specific models. Epipolar curves of special cases are illustrated on panoramic images acquired by a high resolution line-camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信