Milan Stanic, Oscar Palomar, Timothy Hayes, Ivan Ratković, O. Unsal, A. Cristal, M. Valero
{"title":"海报:一个集成的矢量标量设计在一个有序的ARM核心","authors":"Milan Stanic, Oscar Palomar, Timothy Hayes, Ivan Ratković, O. Unsal, A. Cristal, M. Valero","doi":"10.1145/2967938.2974057","DOIUrl":null,"url":null,"abstract":"In the low-end mobile processor market, power, energy and area budgets are significantly lower than in other markets (e.g. servers or high-end mobile markets). It has been shown that vector processors are a highly energy-efficient way to increase performance; however adding support for them incurs area and power overheads that would not be acceptable for low-end mobile processors. In this work, we propose an integrated vector-scalar design for the ARM architecture that mostly reuses scalar hardware to support the execution of vector instructions. The key element of the design is our proposed block-based model of execution that groups vector computational instructions together to execute them in a coordinated manner.","PeriodicalId":407717,"journal":{"name":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POSTER: An integrated vector-scalar design on an in-order ARM core\",\"authors\":\"Milan Stanic, Oscar Palomar, Timothy Hayes, Ivan Ratković, O. Unsal, A. Cristal, M. Valero\",\"doi\":\"10.1145/2967938.2974057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the low-end mobile processor market, power, energy and area budgets are significantly lower than in other markets (e.g. servers or high-end mobile markets). It has been shown that vector processors are a highly energy-efficient way to increase performance; however adding support for them incurs area and power overheads that would not be acceptable for low-end mobile processors. In this work, we propose an integrated vector-scalar design for the ARM architecture that mostly reuses scalar hardware to support the execution of vector instructions. The key element of the design is our proposed block-based model of execution that groups vector computational instructions together to execute them in a coordinated manner.\",\"PeriodicalId\":407717,\"journal\":{\"name\":\"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2967938.2974057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2967938.2974057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
POSTER: An integrated vector-scalar design on an in-order ARM core
In the low-end mobile processor market, power, energy and area budgets are significantly lower than in other markets (e.g. servers or high-end mobile markets). It has been shown that vector processors are a highly energy-efficient way to increase performance; however adding support for them incurs area and power overheads that would not be acceptable for low-end mobile processors. In this work, we propose an integrated vector-scalar design for the ARM architecture that mostly reuses scalar hardware to support the execution of vector instructions. The key element of the design is our proposed block-based model of execution that groups vector computational instructions together to execute them in a coordinated manner.