{"title":"h -衰落:无线通信的h变换理论探讨","authors":"Youngmin Jeong, Hyundong Shin, M. Win","doi":"10.1109/EuCNC.2015.7194034","DOIUrl":null,"url":null,"abstract":"In this paper, we put forth H-fading and degree-2 irregular H-fading to model radio propagation under composite, specular, and/or inhomogeneous conditions. The H-fading describes composite effects of multipath fading and shadowing as a single H-variate, including most of typical models such as Rayleigh, Nakagami-m, Weibull, α-μ, N*Nakagami-m, (generalized) K-fading, and Weibull/gamma fading as its special cases. As a new class of H-variates (called the degree-ζ irregular H-variate), the degree-2 irregular H-fading characterizes specular and/or inhomogeneous radio propagation in which the multipath component consists of a strong specularly-reflected or line-of-sight (LOS) wave as well as unequal-power or correlated in-phase and quadrature scattered waves, including again a variety of typical models such as Rician, Nakagami-q, κ-μ, η-μ, Rician/LOS gamma, and κ-μ/LOS gamma fading as its special cases.","PeriodicalId":310313,"journal":{"name":"2015 European Conference on Networks and Communications (EuCNC)","volume":"81 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"H-fading: Towards H-transform theory for wireless communication\",\"authors\":\"Youngmin Jeong, Hyundong Shin, M. Win\",\"doi\":\"10.1109/EuCNC.2015.7194034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we put forth H-fading and degree-2 irregular H-fading to model radio propagation under composite, specular, and/or inhomogeneous conditions. The H-fading describes composite effects of multipath fading and shadowing as a single H-variate, including most of typical models such as Rayleigh, Nakagami-m, Weibull, α-μ, N*Nakagami-m, (generalized) K-fading, and Weibull/gamma fading as its special cases. As a new class of H-variates (called the degree-ζ irregular H-variate), the degree-2 irregular H-fading characterizes specular and/or inhomogeneous radio propagation in which the multipath component consists of a strong specularly-reflected or line-of-sight (LOS) wave as well as unequal-power or correlated in-phase and quadrature scattered waves, including again a variety of typical models such as Rician, Nakagami-q, κ-μ, η-μ, Rician/LOS gamma, and κ-μ/LOS gamma fading as its special cases.\",\"PeriodicalId\":310313,\"journal\":{\"name\":\"2015 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"81 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2015.7194034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2015.7194034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
H-fading: Towards H-transform theory for wireless communication
In this paper, we put forth H-fading and degree-2 irregular H-fading to model radio propagation under composite, specular, and/or inhomogeneous conditions. The H-fading describes composite effects of multipath fading and shadowing as a single H-variate, including most of typical models such as Rayleigh, Nakagami-m, Weibull, α-μ, N*Nakagami-m, (generalized) K-fading, and Weibull/gamma fading as its special cases. As a new class of H-variates (called the degree-ζ irregular H-variate), the degree-2 irregular H-fading characterizes specular and/or inhomogeneous radio propagation in which the multipath component consists of a strong specularly-reflected or line-of-sight (LOS) wave as well as unequal-power or correlated in-phase and quadrature scattered waves, including again a variety of typical models such as Rician, Nakagami-q, κ-μ, η-μ, Rician/LOS gamma, and κ-μ/LOS gamma fading as its special cases.