基于粒子群算法的雷达网系统误差配准算法

Chenglong He, Xia Zhu
{"title":"基于粒子群算法的雷达网系统误差配准算法","authors":"Chenglong He, Xia Zhu","doi":"10.1109/ISCID.2012.15","DOIUrl":null,"url":null,"abstract":"System error registration is the chief issue for target tracking in radar network. in this paper, the theory for system error registration is analyzed, and optimizing function is proposed by the principle that the true position of different radar should be the same. then a heuristic technique based on a PSO (Particle Swarm Optimization) algorithm is imported to solve the optimizing function, each module in the algorithm is designed and illuminated. Finally simulation is presented to demonstrate the capability and effectiveness of the algorithm.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"31 7-8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"System Error Registration Algorithm for Radar Network Using PSO\",\"authors\":\"Chenglong He, Xia Zhu\",\"doi\":\"10.1109/ISCID.2012.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System error registration is the chief issue for target tracking in radar network. in this paper, the theory for system error registration is analyzed, and optimizing function is proposed by the principle that the true position of different radar should be the same. then a heuristic technique based on a PSO (Particle Swarm Optimization) algorithm is imported to solve the optimizing function, each module in the algorithm is designed and illuminated. Finally simulation is presented to demonstrate the capability and effectiveness of the algorithm.\",\"PeriodicalId\":246432,\"journal\":{\"name\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"volume\":\"31 7-8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2012.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

系统误差配准是雷达网络中目标跟踪的主要问题。本文分析了系统误差配准的原理,并根据不同雷达的真实位置应该相同的原则提出了优化函数。然后引入基于粒子群算法的启发式算法求解优化函数,对算法中的各个模块进行了设计和说明。最后通过仿真验证了该算法的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System Error Registration Algorithm for Radar Network Using PSO
System error registration is the chief issue for target tracking in radar network. in this paper, the theory for system error registration is analyzed, and optimizing function is proposed by the principle that the true position of different radar should be the same. then a heuristic technique based on a PSO (Particle Swarm Optimization) algorithm is imported to solve the optimizing function, each module in the algorithm is designed and illuminated. Finally simulation is presented to demonstrate the capability and effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信