越南语对话系统的迁移学习

Dang Pham, Huy Q. Le, T. Quan
{"title":"越南语对话系统的迁移学习","authors":"Dang Pham, Huy Q. Le, T. Quan","doi":"10.1109/KSE.2019.8919425","DOIUrl":null,"url":null,"abstract":"Training data plays an essential role in the neural network-based dialogue system. Although most of the recent works researching about dialogue system base on a deep neural network show a significant improvement to traditional methods, they required many labeled data for both training and evaluating. In this paper, we present the result of using transfer learning in a Vietnamese dialogue system for the classification task, and we further show benefits of transfer learning on named entity recognition task by experiment results on public VLSP dataset and meets the performance of training from scratch with only 10% of training data.","PeriodicalId":439841,"journal":{"name":"2019 11th International Conference on Knowledge and Systems Engineering (KSE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning for a Vietnamese dialogue system\",\"authors\":\"Dang Pham, Huy Q. Le, T. Quan\",\"doi\":\"10.1109/KSE.2019.8919425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training data plays an essential role in the neural network-based dialogue system. Although most of the recent works researching about dialogue system base on a deep neural network show a significant improvement to traditional methods, they required many labeled data for both training and evaluating. In this paper, we present the result of using transfer learning in a Vietnamese dialogue system for the classification task, and we further show benefits of transfer learning on named entity recognition task by experiment results on public VLSP dataset and meets the performance of training from scratch with only 10% of training data.\",\"PeriodicalId\":439841,\"journal\":{\"name\":\"2019 11th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2019.8919425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2019.8919425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

训练数据在基于神经网络的对话系统中起着至关重要的作用。尽管近年来基于深度神经网络的对话系统研究工作在传统方法的基础上有了很大的改进,但它们需要大量的标记数据进行训练和评估。本文给出了迁移学习在越南语对话系统分类任务中的应用结果,并通过VLSP公共数据集上的实验结果进一步证明了迁移学习在命名实体识别任务上的优势,仅用10%的训练数据就满足了从头开始训练的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning for a Vietnamese dialogue system
Training data plays an essential role in the neural network-based dialogue system. Although most of the recent works researching about dialogue system base on a deep neural network show a significant improvement to traditional methods, they required many labeled data for both training and evaluating. In this paper, we present the result of using transfer learning in a Vietnamese dialogue system for the classification task, and we further show benefits of transfer learning on named entity recognition task by experiment results on public VLSP dataset and meets the performance of training from scratch with only 10% of training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信