移动系统节能自适应分类器设计

Zafar Takhirov, Joseph Wang, Venkatesh Saligrama, A. Joshi
{"title":"移动系统节能自适应分类器设计","authors":"Zafar Takhirov, Joseph Wang, Venkatesh Saligrama, A. Joshi","doi":"10.1145/2934583.2934615","DOIUrl":null,"url":null,"abstract":"With the continuous increase in the amount of data that needs to be processed by digital mobile systems, energy-efficient computation has become a critical design constraint for mobile systems. In this paper, we propose an adaptive classifier that leverages the wide variability in data complexity to enable energy-efficient data classification operations for mobile systems. Our approach takes advantage of varying classification \"hardness\" across data to dynamically allocate resources and improve energy efficiency. On average, our adaptive classifier is ≈ 100× more energy efficient but has ≈ 1% higher error rate than a complex radial basis function classifier and is ≈ 10× less energy efficient but has ≈ 40% lower error rate than a simple linear classifier across a wide range of classification data sets.","PeriodicalId":142716,"journal":{"name":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Energy-Efficient Adaptive Classifier Design for Mobile Systems\",\"authors\":\"Zafar Takhirov, Joseph Wang, Venkatesh Saligrama, A. Joshi\",\"doi\":\"10.1145/2934583.2934615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous increase in the amount of data that needs to be processed by digital mobile systems, energy-efficient computation has become a critical design constraint for mobile systems. In this paper, we propose an adaptive classifier that leverages the wide variability in data complexity to enable energy-efficient data classification operations for mobile systems. Our approach takes advantage of varying classification \\\"hardness\\\" across data to dynamically allocate resources and improve energy efficiency. On average, our adaptive classifier is ≈ 100× more energy efficient but has ≈ 1% higher error rate than a complex radial basis function classifier and is ≈ 10× less energy efficient but has ≈ 40% lower error rate than a simple linear classifier across a wide range of classification data sets.\",\"PeriodicalId\":142716,\"journal\":{\"name\":\"Proceedings of the 2016 International Symposium on Low Power Electronics and Design\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2934583.2934615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2934583.2934615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

随着数字移动系统需要处理的数据量的不断增加,节能计算已成为移动系统设计的关键约束。在本文中,我们提出了一种自适应分类器,它利用数据复杂性的广泛可变性来实现移动系统的节能数据分类操作。我们的方法利用不同的数据分类“硬度”来动态分配资源并提高能源效率。在广泛的分类数据集上,我们的自适应分类器平均比复杂的径向基函数分类器节能约100倍,但错误率约1%;比简单的线性分类器节能约10倍,但错误率约40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Adaptive Classifier Design for Mobile Systems
With the continuous increase in the amount of data that needs to be processed by digital mobile systems, energy-efficient computation has become a critical design constraint for mobile systems. In this paper, we propose an adaptive classifier that leverages the wide variability in data complexity to enable energy-efficient data classification operations for mobile systems. Our approach takes advantage of varying classification "hardness" across data to dynamically allocate resources and improve energy efficiency. On average, our adaptive classifier is ≈ 100× more energy efficient but has ≈ 1% higher error rate than a complex radial basis function classifier and is ≈ 10× less energy efficient but has ≈ 40% lower error rate than a simple linear classifier across a wide range of classification data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信