{"title":"黑洞、中子星与数值相对论","authors":"Jinho Kim","doi":"10.3938/phit.30.017","DOIUrl":null,"url":null,"abstract":"Compact stars, e.g., black holes and neutron stars, are the most energetic objects in astrophysics. These objects are accompanied by extremely strong gravity and a high velocity, which approaches the speed of light. Therefore, compact objects should be dealt with in Einstein’s relativity. This article will briefly introduce a numerical method that will allow us to obtain general solutions in general relativity. Several applications using numerical relativistic simulations will also be presented.","PeriodicalId":365688,"journal":{"name":"Physics and High Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black Hole, Neutron Star and Numerical Relativity\",\"authors\":\"Jinho Kim\",\"doi\":\"10.3938/phit.30.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact stars, e.g., black holes and neutron stars, are the most energetic objects in astrophysics. These objects are accompanied by extremely strong gravity and a high velocity, which approaches the speed of light. Therefore, compact objects should be dealt with in Einstein’s relativity. This article will briefly introduce a numerical method that will allow us to obtain general solutions in general relativity. Several applications using numerical relativistic simulations will also be presented.\",\"PeriodicalId\":365688,\"journal\":{\"name\":\"Physics and High Technology\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and High Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3938/phit.30.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and High Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3938/phit.30.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact stars, e.g., black holes and neutron stars, are the most energetic objects in astrophysics. These objects are accompanied by extremely strong gravity and a high velocity, which approaches the speed of light. Therefore, compact objects should be dealt with in Einstein’s relativity. This article will briefly introduce a numerical method that will allow us to obtain general solutions in general relativity. Several applications using numerical relativistic simulations will also be presented.