自动驾驶汽车跟踪:基于学习的方法

S. Lefèvre, Ashwin Carvalho, F. Borrelli
{"title":"自动驾驶汽车跟踪:基于学习的方法","authors":"S. Lefèvre, Ashwin Carvalho, F. Borrelli","doi":"10.1109/IVS.2015.7225802","DOIUrl":null,"url":null,"abstract":"We propose a learning-based method for the longitudinal control of an autonomous vehicle on the highway. We use a driver model to generate acceleration inputs which are used as a reference by a model predictive controller. The driver model is trained using real driving data, so that it can reproduce the driver's behavior. We show the system's ability to reproduce different driving styles from different drivers. By solving a constrained optimization problem, the model predictive controller ensures that the control inputs applied to the vehicle satisfy some safety criteria. This is demonstrated on a vehicle by artificially creating potentially dangerous situations with virtual obstacles.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Autonomous car following: A learning-based approach\",\"authors\":\"S. Lefèvre, Ashwin Carvalho, F. Borrelli\",\"doi\":\"10.1109/IVS.2015.7225802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a learning-based method for the longitudinal control of an autonomous vehicle on the highway. We use a driver model to generate acceleration inputs which are used as a reference by a model predictive controller. The driver model is trained using real driving data, so that it can reproduce the driver's behavior. We show the system's ability to reproduce different driving styles from different drivers. By solving a constrained optimization problem, the model predictive controller ensures that the control inputs applied to the vehicle satisfy some safety criteria. This is demonstrated on a vehicle by artificially creating potentially dangerous situations with virtual obstacles.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

我们提出了一种基于学习的高速公路自动驾驶车辆纵向控制方法。我们使用驱动模型来生成加速度输入,这些输入被模型预测控制器用作参考。驾驶员模型使用真实驾驶数据进行训练,从而能够再现驾驶员的行为。我们展示了该系统能够从不同的驾驶员身上重现不同的驾驶风格。模型预测控制器通过求解约束优化问题,保证应用于车辆的控制输入满足一定的安全准则。通过人为地制造带有虚拟障碍物的潜在危险情况,在一辆汽车上进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous car following: A learning-based approach
We propose a learning-based method for the longitudinal control of an autonomous vehicle on the highway. We use a driver model to generate acceleration inputs which are used as a reference by a model predictive controller. The driver model is trained using real driving data, so that it can reproduce the driver's behavior. We show the system's ability to reproduce different driving styles from different drivers. By solving a constrained optimization problem, the model predictive controller ensures that the control inputs applied to the vehicle satisfy some safety criteria. This is demonstrated on a vehicle by artificially creating potentially dangerous situations with virtual obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信