非阻塞二叉搜索树的平摊复杂度

Faith Ellen, P. Fatourou, J. Helga, E. Ruppert
{"title":"非阻塞二叉搜索树的平摊复杂度","authors":"Faith Ellen, P. Fatourou, J. Helga, E. Ruppert","doi":"10.1145/2611462.2611486","DOIUrl":null,"url":null,"abstract":"We improve upon an existing non-blocking implementation of a binary search tree from single-word compare-and-swap instructions. We show that the worst-case amortized step complexity of performing a Find, Insert or Delete operation op on the tree is O(h(op)+c(op)) where h(op) is the height of the tree at the beginning of op and c(op) is the maximum number of operations accessing the tree at any one time during op. This is the first bound on the complexity of a non-blocking implementation of a search tree.","PeriodicalId":186800,"journal":{"name":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"The amortized complexity of non-blocking binary search trees\",\"authors\":\"Faith Ellen, P. Fatourou, J. Helga, E. Ruppert\",\"doi\":\"10.1145/2611462.2611486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We improve upon an existing non-blocking implementation of a binary search tree from single-word compare-and-swap instructions. We show that the worst-case amortized step complexity of performing a Find, Insert or Delete operation op on the tree is O(h(op)+c(op)) where h(op) is the height of the tree at the beginning of op and c(op) is the maximum number of operations accessing the tree at any one time during op. This is the first bound on the complexity of a non-blocking implementation of a search tree.\",\"PeriodicalId\":186800,\"journal\":{\"name\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611462.2611486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611462.2611486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

我们改进了现有的基于单字比较与交换指令的二叉搜索树的非阻塞实现。我们证明了在树上执行查找,插入或删除操作op的最坏情况平摊步骤复杂度为O(h(op)+c(op)),其中h(op)是op开始时树的高度,c(op)是op期间任何一次访问树的最大操作数。这是搜索树的非阻塞实现复杂性的第一个界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The amortized complexity of non-blocking binary search trees
We improve upon an existing non-blocking implementation of a binary search tree from single-word compare-and-swap instructions. We show that the worst-case amortized step complexity of performing a Find, Insert or Delete operation op on the tree is O(h(op)+c(op)) where h(op) is the height of the tree at the beginning of op and c(op) is the maximum number of operations accessing the tree at any one time during op. This is the first bound on the complexity of a non-blocking implementation of a search tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信