DexPoint:模拟到真实灵巧操作的可推广点云强化学习

Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Hao Su, Xiaolong Wang
{"title":"DexPoint:模拟到真实灵巧操作的可推广点云强化学习","authors":"Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Hao Su, Xiaolong Wang","doi":"10.48550/arXiv.2211.09423","DOIUrl":null,"url":null,"abstract":"We propose a sim-to-real framework for dexterous manipulation which can generalize to new objects of the same category in the real world. The key of our framework is to train the manipulation policy with point cloud inputs and dexterous hands. We propose two new techniques to enable joint learning on multiple objects and sim-to-real generalization: (i) using imagined hand point clouds as augmented inputs; and (ii) designing novel contact-based rewards. We empirically evaluate our method using an Allegro Hand to grasp novel objects in both simulation and real world. To the best of our knowledge, this is the first policy learning-based framework that achieves such generalization results with dexterous hands. Our project page is available at https://yzqin.github.io/dexpoint","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"DexPoint: Generalizable Point Cloud Reinforcement Learning for Sim-to-Real Dexterous Manipulation\",\"authors\":\"Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Hao Su, Xiaolong Wang\",\"doi\":\"10.48550/arXiv.2211.09423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a sim-to-real framework for dexterous manipulation which can generalize to new objects of the same category in the real world. The key of our framework is to train the manipulation policy with point cloud inputs and dexterous hands. We propose two new techniques to enable joint learning on multiple objects and sim-to-real generalization: (i) using imagined hand point clouds as augmented inputs; and (ii) designing novel contact-based rewards. We empirically evaluate our method using an Allegro Hand to grasp novel objects in both simulation and real world. To the best of our knowledge, this is the first policy learning-based framework that achieves such generalization results with dexterous hands. Our project page is available at https://yzqin.github.io/dexpoint\",\"PeriodicalId\":273870,\"journal\":{\"name\":\"Conference on Robot Learning\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Robot Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.09423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.09423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一个模拟到真实的灵巧操作框架,它可以推广到现实世界中相同类别的新对象。该框架的关键是利用点云输入和灵巧的手来训练操作策略。我们提出了两种新技术来实现多对象的联合学习和模拟到真实的泛化:(i)使用想象的手点云作为增强输入;(2)设计新颖的基于接触的奖励。我们在模拟和现实世界中使用快板手对我们的方法进行了经验评估。据我们所知,这是第一个基于政策学习的框架,用灵巧的双手实现了这样的泛化结果。我们的项目页面可访问https://yzqin.github.io/dexpoint
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DexPoint: Generalizable Point Cloud Reinforcement Learning for Sim-to-Real Dexterous Manipulation
We propose a sim-to-real framework for dexterous manipulation which can generalize to new objects of the same category in the real world. The key of our framework is to train the manipulation policy with point cloud inputs and dexterous hands. We propose two new techniques to enable joint learning on multiple objects and sim-to-real generalization: (i) using imagined hand point clouds as augmented inputs; and (ii) designing novel contact-based rewards. We empirically evaluate our method using an Allegro Hand to grasp novel objects in both simulation and real world. To the best of our knowledge, this is the first policy learning-based framework that achieves such generalization results with dexterous hands. Our project page is available at https://yzqin.github.io/dexpoint
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信