基于多模态机器学习的扩展现实模拟智能家居用户行为预测研究

Powen Yao, Yu Hou, Yuan He, Da Cheng, Huanpu Hu, Michael Zyda
{"title":"基于多模态机器学习的扩展现实模拟智能家居用户行为预测研究","authors":"Powen Yao, Yu Hou, Yuan He, Da Cheng, Huanpu Hu, Michael Zyda","doi":"10.1109/VRW55335.2022.00195","DOIUrl":null,"url":null,"abstract":"In this work, we propose a multi-modal approach to manipulate smart home devices in a smart home environment simulated in virtual reality (VR). We determine the user's target device and the desired action by their utterance, spatial information (gestures, positions, etc.), or a combination of the two. Since the information contained in the user's utterance and the spatial information can be disjoint or complementary to each other, we process the two sources of information in parallel using our array of machine learning models. We use ensemble modeling to aggregate the results of these models and enhance the quality of our final prediction results. We present our preliminary architecture, models, and findings.","PeriodicalId":326252,"journal":{"name":"2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Using Multi-Modal Machine Learning for User Behavior Prediction in Simulated Smart Home for Extended Reality\",\"authors\":\"Powen Yao, Yu Hou, Yuan He, Da Cheng, Huanpu Hu, Michael Zyda\",\"doi\":\"10.1109/VRW55335.2022.00195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a multi-modal approach to manipulate smart home devices in a smart home environment simulated in virtual reality (VR). We determine the user's target device and the desired action by their utterance, spatial information (gestures, positions, etc.), or a combination of the two. Since the information contained in the user's utterance and the spatial information can be disjoint or complementary to each other, we process the two sources of information in parallel using our array of machine learning models. We use ensemble modeling to aggregate the results of these models and enhance the quality of our final prediction results. We present our preliminary architecture, models, and findings.\",\"PeriodicalId\":326252,\"journal\":{\"name\":\"2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VRW55335.2022.00195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW55335.2022.00195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种在虚拟现实(VR)模拟的智能家居环境中操作智能家居设备的多模态方法。我们通过用户的话语、空间信息(手势、位置等)或两者的结合来确定用户的目标设备和期望的动作。由于用户话语中包含的信息和空间信息可以不相交或互补,因此我们使用我们的机器学习模型阵列并行处理这两个信息源。我们使用集成建模来聚合这些模型的结果,并提高最终预测结果的质量。我们介绍了我们的初步架构、模型和发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Using Multi-Modal Machine Learning for User Behavior Prediction in Simulated Smart Home for Extended Reality
In this work, we propose a multi-modal approach to manipulate smart home devices in a smart home environment simulated in virtual reality (VR). We determine the user's target device and the desired action by their utterance, spatial information (gestures, positions, etc.), or a combination of the two. Since the information contained in the user's utterance and the spatial information can be disjoint or complementary to each other, we process the two sources of information in parallel using our array of machine learning models. We use ensemble modeling to aggregate the results of these models and enhance the quality of our final prediction results. We present our preliminary architecture, models, and findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信