需求响应的在线学习

D. Kalathil, R. Rajagopal
{"title":"需求响应的在线学习","authors":"D. Kalathil, R. Rajagopal","doi":"10.1109/ALLERTON.2015.7447007","DOIUrl":null,"url":null,"abstract":"Demand response is a key component of existing and future grid systems facing increased variability and peak demands. Scaling demand response requires efficiently predicting individual responses for large numbers of consumers while selecting the right ones to signal. This paper proposes a new online learning problem that captures consumer diversity, messaging fatigue and response prediction. We use the framework of multi-armed bandits model to address this problem. This yields simple and easy to implement index based learning algorithms with provable performance guarantees.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Online learning for demand response\",\"authors\":\"D. Kalathil, R. Rajagopal\",\"doi\":\"10.1109/ALLERTON.2015.7447007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand response is a key component of existing and future grid systems facing increased variability and peak demands. Scaling demand response requires efficiently predicting individual responses for large numbers of consumers while selecting the right ones to signal. This paper proposes a new online learning problem that captures consumer diversity, messaging fatigue and response prediction. We use the framework of multi-armed bandits model to address this problem. This yields simple and easy to implement index based learning algorithms with provable performance guarantees.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

需求响应是当前和未来电网系统面临日益增加的可变性和峰值需求的关键组成部分。扩展需求响应需要有效地预测大量消费者的个人响应,同时选择正确的信号。本文提出了一个新的在线学习问题,该问题捕获了消费者多样性、消息传递疲劳和响应预测。我们使用多武装强盗模型的框架来解决这个问题。这产生了简单且易于实现的基于索引的学习算法,具有可证明的性能保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online learning for demand response
Demand response is a key component of existing and future grid systems facing increased variability and peak demands. Scaling demand response requires efficiently predicting individual responses for large numbers of consumers while selecting the right ones to signal. This paper proposes a new online learning problem that captures consumer diversity, messaging fatigue and response prediction. We use the framework of multi-armed bandits model to address this problem. This yields simple and easy to implement index based learning algorithms with provable performance guarantees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信