{"title":"基于改进自适应批评学习策略的事件驱动鲁棒保证成本控制","authors":"Zihang Zhou, Ding Wang, Xin Xu","doi":"10.1109/IAI55780.2022.9976561","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an event-driven robust guaranteed cost control strategy of continuous-time (CT) systems via improved adaptive critic learning (ACL). First, we choose a suitable cost function which reflects uncertainties, control, and regulation, in order to transform the robust control problem into the optimal control problem. Then, we obtain the time-driven optimal control law and the Hamilton-Jacobi-Bellman equation. Next, through theoretical analysis, we derive the event-driven optimal control law of the nominal system based on the ACL method, and prove the robust stabilization of the CT nonlinear system. Additionally, we construct a novel critic neural network learning algorithm to accelerate the convergence of weights. We also obtain the neural-network-based event-driven condition and prove the closed-loop system stability. Finally, the simulation result shows the effectiveness of the event-driven guaranteed cost control design.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-Driven Robust Guaranteed Cost Control via an Improved Adaptive Critic Learning Strategy\",\"authors\":\"Zihang Zhou, Ding Wang, Xin Xu\",\"doi\":\"10.1109/IAI55780.2022.9976561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop an event-driven robust guaranteed cost control strategy of continuous-time (CT) systems via improved adaptive critic learning (ACL). First, we choose a suitable cost function which reflects uncertainties, control, and regulation, in order to transform the robust control problem into the optimal control problem. Then, we obtain the time-driven optimal control law and the Hamilton-Jacobi-Bellman equation. Next, through theoretical analysis, we derive the event-driven optimal control law of the nominal system based on the ACL method, and prove the robust stabilization of the CT nonlinear system. Additionally, we construct a novel critic neural network learning algorithm to accelerate the convergence of weights. We also obtain the neural-network-based event-driven condition and prove the closed-loop system stability. Finally, the simulation result shows the effectiveness of the event-driven guaranteed cost control design.\",\"PeriodicalId\":138951,\"journal\":{\"name\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI55780.2022.9976561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Event-Driven Robust Guaranteed Cost Control via an Improved Adaptive Critic Learning Strategy
In this paper, we develop an event-driven robust guaranteed cost control strategy of continuous-time (CT) systems via improved adaptive critic learning (ACL). First, we choose a suitable cost function which reflects uncertainties, control, and regulation, in order to transform the robust control problem into the optimal control problem. Then, we obtain the time-driven optimal control law and the Hamilton-Jacobi-Bellman equation. Next, through theoretical analysis, we derive the event-driven optimal control law of the nominal system based on the ACL method, and prove the robust stabilization of the CT nonlinear system. Additionally, we construct a novel critic neural network learning algorithm to accelerate the convergence of weights. We also obtain the neural-network-based event-driven condition and prove the closed-loop system stability. Finally, the simulation result shows the effectiveness of the event-driven guaranteed cost control design.