{"title":"用于射频能量收集的紧凑、低损耗波束形成网络的合成","authors":"B. Marshall, G. Durgin","doi":"10.1109/RFID52461.2021.9444374","DOIUrl":null,"url":null,"abstract":"The new algorithm described in this work produces an optimized RF beam-forming network. Based on a sequential optimization technique that has been particularly adapted to microwave circuitry, the technique is well-suited for design of energy-harvesting networks with arrays because it can emphasize compact size and low-loss. This methodology defines a planar area (with a ground plane), ports, and a goal scattering matrix then iterates through various design structures to find an optimal solution. Numerous circuit design applications beyond energy-harvesting would also benefit.","PeriodicalId":358808,"journal":{"name":"2021 IEEE International Conference on RFID (RFID)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Compact, Low-Loss Beam-forming Networks for RF Energy Harvesting\",\"authors\":\"B. Marshall, G. Durgin\",\"doi\":\"10.1109/RFID52461.2021.9444374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new algorithm described in this work produces an optimized RF beam-forming network. Based on a sequential optimization technique that has been particularly adapted to microwave circuitry, the technique is well-suited for design of energy-harvesting networks with arrays because it can emphasize compact size and low-loss. This methodology defines a planar area (with a ground plane), ports, and a goal scattering matrix then iterates through various design structures to find an optimal solution. Numerous circuit design applications beyond energy-harvesting would also benefit.\",\"PeriodicalId\":358808,\"journal\":{\"name\":\"2021 IEEE International Conference on RFID (RFID)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on RFID (RFID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFID52461.2021.9444374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on RFID (RFID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID52461.2021.9444374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Compact, Low-Loss Beam-forming Networks for RF Energy Harvesting
The new algorithm described in this work produces an optimized RF beam-forming network. Based on a sequential optimization technique that has been particularly adapted to microwave circuitry, the technique is well-suited for design of energy-harvesting networks with arrays because it can emphasize compact size and low-loss. This methodology defines a planar area (with a ground plane), ports, and a goal scattering matrix then iterates through various design structures to find an optimal solution. Numerous circuit design applications beyond energy-harvesting would also benefit.