基于低功率雷达的自主赛车对手鲁棒速度和位置估计

Andrea Ronco, Nicolas Baumann, Marco Giordano, Michele Magno
{"title":"基于低功率雷达的自主赛车对手鲁棒速度和位置估计","authors":"Andrea Ronco, Nicolas Baumann, Marco Giordano, Michele Magno","doi":"10.1109/IWASI58316.2023.10164312","DOIUrl":null,"url":null,"abstract":"This paper presents the design and development of an intelligent subsystem that includes a novel low-power radar sensor integrated into an autonomous racing perception pipeline to robustly estimate the position and velocity of dynamic obstacles. The proposed system, based on the Infineon BGT60TR13D radar, is evaluated in a real-world scenario with scaled race cars. The paper explores the benefits and limitations of using such a sensor subsystem and draws conclusions based on field-collected data. The results demonstrate a tracking error up to 0.21 ± 0.29m in distance estimation and 0.39 ± 0.19m/s in velocity estimation, despite the power consumption in the range of 10s of milliwatts. The presented system provides complementary information to other sensors such as LiDAR and camera, and can be used in a wide range of applications beyond autonomous racing.","PeriodicalId":261827,"journal":{"name":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Robust Velocity and Position Estimation of Opponents for Autonomous Racing Using Low-Power Radar\",\"authors\":\"Andrea Ronco, Nicolas Baumann, Marco Giordano, Michele Magno\",\"doi\":\"10.1109/IWASI58316.2023.10164312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and development of an intelligent subsystem that includes a novel low-power radar sensor integrated into an autonomous racing perception pipeline to robustly estimate the position and velocity of dynamic obstacles. The proposed system, based on the Infineon BGT60TR13D radar, is evaluated in a real-world scenario with scaled race cars. The paper explores the benefits and limitations of using such a sensor subsystem and draws conclusions based on field-collected data. The results demonstrate a tracking error up to 0.21 ± 0.29m in distance estimation and 0.39 ± 0.19m/s in velocity estimation, despite the power consumption in the range of 10s of milliwatts. The presented system provides complementary information to other sensors such as LiDAR and camera, and can be used in a wide range of applications beyond autonomous racing.\",\"PeriodicalId\":261827,\"journal\":{\"name\":\"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWASI58316.2023.10164312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI58316.2023.10164312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种智能子系统的设计和开发,该子系统包括一个集成在自主赛车感知管道中的新型低功耗雷达传感器,用于鲁棒估计动态障碍物的位置和速度。该系统基于英飞凌BGT60TR13D雷达,并在实际赛车场景中进行了评估。本文探讨了使用这种传感器子系统的优点和局限性,并根据现场收集的数据得出结论。结果表明,尽管功耗在10s毫瓦范围内,但距离估计误差为0.21±0.29m,速度估计误差为0.39±0.19m/s。该系统为激光雷达和摄像头等其他传感器提供补充信息,可用于自动驾驶赛车以外的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Robust Velocity and Position Estimation of Opponents for Autonomous Racing Using Low-Power Radar
This paper presents the design and development of an intelligent subsystem that includes a novel low-power radar sensor integrated into an autonomous racing perception pipeline to robustly estimate the position and velocity of dynamic obstacles. The proposed system, based on the Infineon BGT60TR13D radar, is evaluated in a real-world scenario with scaled race cars. The paper explores the benefits and limitations of using such a sensor subsystem and draws conclusions based on field-collected data. The results demonstrate a tracking error up to 0.21 ± 0.29m in distance estimation and 0.39 ± 0.19m/s in velocity estimation, despite the power consumption in the range of 10s of milliwatts. The presented system provides complementary information to other sensors such as LiDAR and camera, and can be used in a wide range of applications beyond autonomous racing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信