{"title":"58ni中核电四极矩(Q)","authors":"Huda A. Ruzuqy, F. Z. Majeed","doi":"10.11648/j.ajpa.20180604.11","DOIUrl":null,"url":null,"abstract":"Nuclear Electric quadrapole moments Q in 58Ni for some selected levels have been investigated and calculated through Nuclear shell model and considering of 56Ni as an inert core with two active neutrons in a model space (2p3/2, 1f5/2 and 2p1/2) and the configuration mixing of the original states is also done. F5Pvh interaction has been utilized as a two body interaction to generate model space vectors with harmonic oscillator potential as a single particle wave function. OXBASH code is used to carry this calculations and the program of Core, Valence, Tassie (CVT) written in FORTRAN go language to calculate the Electric quadrapole moments between excited states themselves. All of these calculations have been carried through model space vectors only. One body density matrix elements (OBDM) for ground and Excited states is calculated in order to carry the calculations using single particle Transition matrix elements between excited states theme selves.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear Electric Quadrapole Moments (Q) in 58 Ni\",\"authors\":\"Huda A. Ruzuqy, F. Z. Majeed\",\"doi\":\"10.11648/j.ajpa.20180604.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear Electric quadrapole moments Q in 58Ni for some selected levels have been investigated and calculated through Nuclear shell model and considering of 56Ni as an inert core with two active neutrons in a model space (2p3/2, 1f5/2 and 2p1/2) and the configuration mixing of the original states is also done. F5Pvh interaction has been utilized as a two body interaction to generate model space vectors with harmonic oscillator potential as a single particle wave function. OXBASH code is used to carry this calculations and the program of Core, Valence, Tassie (CVT) written in FORTRAN go language to calculate the Electric quadrapole moments between excited states themselves. All of these calculations have been carried through model space vectors only. One body density matrix elements (OBDM) for ground and Excited states is calculated in order to carry the calculations using single particle Transition matrix elements between excited states theme selves.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.ajpa.20180604.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajpa.20180604.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nuclear Electric quadrapole moments Q in 58Ni for some selected levels have been investigated and calculated through Nuclear shell model and considering of 56Ni as an inert core with two active neutrons in a model space (2p3/2, 1f5/2 and 2p1/2) and the configuration mixing of the original states is also done. F5Pvh interaction has been utilized as a two body interaction to generate model space vectors with harmonic oscillator potential as a single particle wave function. OXBASH code is used to carry this calculations and the program of Core, Valence, Tassie (CVT) written in FORTRAN go language to calculate the Electric quadrapole moments between excited states themselves. All of these calculations have been carried through model space vectors only. One body density matrix elements (OBDM) for ground and Excited states is calculated in order to carry the calculations using single particle Transition matrix elements between excited states theme selves.