{"title":"基于稀疏NMF和图正则化的越南语数据源分离","authors":"Tuan Q. Pham","doi":"10.31130/ICT-UD.2020.98","DOIUrl":null,"url":null,"abstract":"Source separation is popular problem in which English datasets is used by default. Besides, source separation or speech enhancement is an important pre-processing step for following processes e.g. automatic speech recognition, automatic answering machine or hearing ads…However, experiments of source separation on Vietnamese dataset is quite modest as well as lack of Vietnamese standard datasets for source separation. To deal these issues, we build a Vietnamese dataset for source separation by collecting utterances of broadcasters from VTV’s official website. Moreover, a novel method was proposed by using sparse non-negative matrix factorization and graph regularization. Experiments showed that the proposed method is outperformed baseline. ","PeriodicalId":114451,"journal":{"name":"Journal of Science and Technology: Issue on Information and Communications Technology","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source Separation using Sparse NMF and Graph Regularization on Vietnamese Dataset\",\"authors\":\"Tuan Q. Pham\",\"doi\":\"10.31130/ICT-UD.2020.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Source separation is popular problem in which English datasets is used by default. Besides, source separation or speech enhancement is an important pre-processing step for following processes e.g. automatic speech recognition, automatic answering machine or hearing ads…However, experiments of source separation on Vietnamese dataset is quite modest as well as lack of Vietnamese standard datasets for source separation. To deal these issues, we build a Vietnamese dataset for source separation by collecting utterances of broadcasters from VTV’s official website. Moreover, a novel method was proposed by using sparse non-negative matrix factorization and graph regularization. Experiments showed that the proposed method is outperformed baseline. \",\"PeriodicalId\":114451,\"journal\":{\"name\":\"Journal of Science and Technology: Issue on Information and Communications Technology\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Technology: Issue on Information and Communications Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31130/ICT-UD.2020.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology: Issue on Information and Communications Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31130/ICT-UD.2020.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Source Separation using Sparse NMF and Graph Regularization on Vietnamese Dataset
Source separation is popular problem in which English datasets is used by default. Besides, source separation or speech enhancement is an important pre-processing step for following processes e.g. automatic speech recognition, automatic answering machine or hearing ads…However, experiments of source separation on Vietnamese dataset is quite modest as well as lack of Vietnamese standard datasets for source separation. To deal these issues, we build a Vietnamese dataset for source separation by collecting utterances of broadcasters from VTV’s official website. Moreover, a novel method was proposed by using sparse non-negative matrix factorization and graph regularization. Experiments showed that the proposed method is outperformed baseline.