{"title":"广义零射击识别的不相似表示学习","authors":"Gang Yang, Jinlu Liu, Jieping Xu, Xirong Li","doi":"10.1145/3240508.3240686","DOIUrl":null,"url":null,"abstract":"Generalized zero-shot learning (GZSL) aims to recognize any test instance coming either from a known class or from a novel class that has no training instance. To synthesize training instances for novel classes and thus resolving GZSL as a common classification problem, we propose a Dissimilarity Representation Learning (DSS) method. Dissimilarity representation is to represent a specific instance in terms of its (dis)similarity to other instances in a visual or attribute based feature space. In the dissimilarity space, instances of the novel classes are synthesized by an end-to-end optimized neural network. The neural network realizes two-level feature mappings and domain adaptions in the dissimilarity space and the attribute based feature space. Experimental results on five benchmark datasets, i.e., AWA, AWA$_2$, SUN, CUB, and aPY, show that the proposed method improves the state-of-the-art with a large margin, approximately 10% gain in terms of the harmonic mean of the top-1 accuracy. Consequently, this paper establishes a new baseline for GZSL.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Dissimilarity Representation Learning for Generalized Zero-Shot Recognition\",\"authors\":\"Gang Yang, Jinlu Liu, Jieping Xu, Xirong Li\",\"doi\":\"10.1145/3240508.3240686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized zero-shot learning (GZSL) aims to recognize any test instance coming either from a known class or from a novel class that has no training instance. To synthesize training instances for novel classes and thus resolving GZSL as a common classification problem, we propose a Dissimilarity Representation Learning (DSS) method. Dissimilarity representation is to represent a specific instance in terms of its (dis)similarity to other instances in a visual or attribute based feature space. In the dissimilarity space, instances of the novel classes are synthesized by an end-to-end optimized neural network. The neural network realizes two-level feature mappings and domain adaptions in the dissimilarity space and the attribute based feature space. Experimental results on five benchmark datasets, i.e., AWA, AWA$_2$, SUN, CUB, and aPY, show that the proposed method improves the state-of-the-art with a large margin, approximately 10% gain in terms of the harmonic mean of the top-1 accuracy. Consequently, this paper establishes a new baseline for GZSL.\",\"PeriodicalId\":339857,\"journal\":{\"name\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dissimilarity Representation Learning for Generalized Zero-Shot Recognition
Generalized zero-shot learning (GZSL) aims to recognize any test instance coming either from a known class or from a novel class that has no training instance. To synthesize training instances for novel classes and thus resolving GZSL as a common classification problem, we propose a Dissimilarity Representation Learning (DSS) method. Dissimilarity representation is to represent a specific instance in terms of its (dis)similarity to other instances in a visual or attribute based feature space. In the dissimilarity space, instances of the novel classes are synthesized by an end-to-end optimized neural network. The neural network realizes two-level feature mappings and domain adaptions in the dissimilarity space and the attribute based feature space. Experimental results on five benchmark datasets, i.e., AWA, AWA$_2$, SUN, CUB, and aPY, show that the proposed method improves the state-of-the-art with a large margin, approximately 10% gain in terms of the harmonic mean of the top-1 accuracy. Consequently, this paper establishes a new baseline for GZSL.