一种新的基于过去的可变遗忘因子和正则化自适应ESPIRT算法

Jianqiang Lin, S. Chan
{"title":"一种新的基于过去的可变遗忘因子和正则化自适应ESPIRT算法","authors":"Jianqiang Lin, S. Chan","doi":"10.1109/ICDSP.2018.8631851","DOIUrl":null,"url":null,"abstract":"The estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm is a widely used subspace-based method for direction-of-arrival (DOA) estimation in array signal processing and spectral analysis. It requires the estimation of the signal subspaces of rotational invariance sub-arrays of a sensor array, from which the DOAs can be estimated by solving an eigenvalue problem. This paper proposes a projection approximation subspace tracking (PAST)-based adaptive ESPRIT algorithm with variable forgetting factor (VFF) and variable regularization (VR). The VFF and VR PAST algorithm is based on a recently proposed Locally Optimal FF (LOFF) scheme with improved convergence speed and steady state error performance. Moreover, variable regularization is incorporated to reduce the estimation variance during ill-conditioning or low input signal level. The proposed LOFF-VR adaptive ESPRIT method is also utilized for tracking the eigenvalues and hence the DOAs. Experimental simulations show that the proposed LOFF-VR-ESPRIT algorithm outperforms the conventional approaches in stationary and nonstationary environments, especially in the presence of signal fading.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New PAST-Based Adaptive ESPIRT Algorithm with Variable Forgetting Factor and Regularization\",\"authors\":\"Jianqiang Lin, S. Chan\",\"doi\":\"10.1109/ICDSP.2018.8631851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm is a widely used subspace-based method for direction-of-arrival (DOA) estimation in array signal processing and spectral analysis. It requires the estimation of the signal subspaces of rotational invariance sub-arrays of a sensor array, from which the DOAs can be estimated by solving an eigenvalue problem. This paper proposes a projection approximation subspace tracking (PAST)-based adaptive ESPRIT algorithm with variable forgetting factor (VFF) and variable regularization (VR). The VFF and VR PAST algorithm is based on a recently proposed Locally Optimal FF (LOFF) scheme with improved convergence speed and steady state error performance. Moreover, variable regularization is incorporated to reduce the estimation variance during ill-conditioning or low input signal level. The proposed LOFF-VR adaptive ESPRIT method is also utilized for tracking the eigenvalues and hence the DOAs. Experimental simulations show that the proposed LOFF-VR-ESPRIT algorithm outperforms the conventional approaches in stationary and nonstationary environments, especially in the presence of signal fading.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

旋转不变性估计(ESPRIT)算法是一种基于子空间的阵列信号处理和频谱分析中广泛应用的到达方向估计方法。它要求对传感器阵列旋转不变性子阵列的信号子空间进行估计,并通过求解特征值问题来估计doa。提出了一种基于投影逼近子空间跟踪(PAST)的可变遗忘因子(VFF)和可变正则化(VR)的自适应ESPRIT算法。VFF和VR PAST算法基于最近提出的局部最优FF (LOFF)方案,具有提高的收敛速度和稳态误差性能。此外,该方法还引入了变量正则化,以减小在条件不良或低输入信号电平时的估计方差。提出的LOFF-VR自适应ESPRIT方法还用于跟踪特征值,从而跟踪doa。实验仿真结果表明,所提出的LOFF-VR-ESPRIT算法在平稳和非平稳环境下,特别是在存在信号衰落的情况下,都优于传统的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New PAST-Based Adaptive ESPIRT Algorithm with Variable Forgetting Factor and Regularization
The estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm is a widely used subspace-based method for direction-of-arrival (DOA) estimation in array signal processing and spectral analysis. It requires the estimation of the signal subspaces of rotational invariance sub-arrays of a sensor array, from which the DOAs can be estimated by solving an eigenvalue problem. This paper proposes a projection approximation subspace tracking (PAST)-based adaptive ESPRIT algorithm with variable forgetting factor (VFF) and variable regularization (VR). The VFF and VR PAST algorithm is based on a recently proposed Locally Optimal FF (LOFF) scheme with improved convergence speed and steady state error performance. Moreover, variable regularization is incorporated to reduce the estimation variance during ill-conditioning or low input signal level. The proposed LOFF-VR adaptive ESPRIT method is also utilized for tracking the eigenvalues and hence the DOAs. Experimental simulations show that the proposed LOFF-VR-ESPRIT algorithm outperforms the conventional approaches in stationary and nonstationary environments, especially in the presence of signal fading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信