Pei Cao, Hongyi Zhang, Dawu Gu, Yan Lu, Yidong Yuan
{"title":"AL-PA:使用对抗性学习的跨设备侧信道攻击","authors":"Pei Cao, Hongyi Zhang, Dawu Gu, Yan Lu, Yidong Yuan","doi":"10.1145/3489517.3530517","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the portability issue in profiled side-channel attacks (SCAs) that arises due to significant device-to-device variations. Device discrepancy is inevitable in realistic attacks, but it is often neglected in research works. In this paper, we identify such device variations and take a further step towards leveraging the transferability of neural networks. We propose a novel adversarial learning-based profiled attack (AL-PA), which enables our neural network to learn device-invariant features. We evaluated our strategy on eight XMEGA microcontrollers. Without the need for target-specific preprocessing and multiple profiling devices, our approach has outperformed the state-of-the-art methods.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"AL-PA: cross-device profiled side-channel attack using adversarial learning\",\"authors\":\"Pei Cao, Hongyi Zhang, Dawu Gu, Yan Lu, Yidong Yuan\",\"doi\":\"10.1145/3489517.3530517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the portability issue in profiled side-channel attacks (SCAs) that arises due to significant device-to-device variations. Device discrepancy is inevitable in realistic attacks, but it is often neglected in research works. In this paper, we identify such device variations and take a further step towards leveraging the transferability of neural networks. We propose a novel adversarial learning-based profiled attack (AL-PA), which enables our neural network to learn device-invariant features. We evaluated our strategy on eight XMEGA microcontrollers. Without the need for target-specific preprocessing and multiple profiling devices, our approach has outperformed the state-of-the-art methods.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AL-PA: cross-device profiled side-channel attack using adversarial learning
In this paper, we focus on the portability issue in profiled side-channel attacks (SCAs) that arises due to significant device-to-device variations. Device discrepancy is inevitable in realistic attacks, but it is often neglected in research works. In this paper, we identify such device variations and take a further step towards leveraging the transferability of neural networks. We propose a novel adversarial learning-based profiled attack (AL-PA), which enables our neural network to learn device-invariant features. We evaluated our strategy on eight XMEGA microcontrollers. Without the need for target-specific preprocessing and multiple profiling devices, our approach has outperformed the state-of-the-art methods.