AL-PA:使用对抗性学习的跨设备侧信道攻击

Pei Cao, Hongyi Zhang, Dawu Gu, Yan Lu, Yidong Yuan
{"title":"AL-PA:使用对抗性学习的跨设备侧信道攻击","authors":"Pei Cao, Hongyi Zhang, Dawu Gu, Yan Lu, Yidong Yuan","doi":"10.1145/3489517.3530517","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the portability issue in profiled side-channel attacks (SCAs) that arises due to significant device-to-device variations. Device discrepancy is inevitable in realistic attacks, but it is often neglected in research works. In this paper, we identify such device variations and take a further step towards leveraging the transferability of neural networks. We propose a novel adversarial learning-based profiled attack (AL-PA), which enables our neural network to learn device-invariant features. We evaluated our strategy on eight XMEGA microcontrollers. Without the need for target-specific preprocessing and multiple profiling devices, our approach has outperformed the state-of-the-art methods.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"AL-PA: cross-device profiled side-channel attack using adversarial learning\",\"authors\":\"Pei Cao, Hongyi Zhang, Dawu Gu, Yan Lu, Yidong Yuan\",\"doi\":\"10.1145/3489517.3530517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the portability issue in profiled side-channel attacks (SCAs) that arises due to significant device-to-device variations. Device discrepancy is inevitable in realistic attacks, but it is often neglected in research works. In this paper, we identify such device variations and take a further step towards leveraging the transferability of neural networks. We propose a novel adversarial learning-based profiled attack (AL-PA), which enables our neural network to learn device-invariant features. We evaluated our strategy on eight XMEGA microcontrollers. Without the need for target-specific preprocessing and multiple profiling devices, our approach has outperformed the state-of-the-art methods.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们将重点关注由于设备到设备的显著差异而产生的侧信道攻击(sca)中的可移植性问题。设备差异在现实攻击中是不可避免的,但在研究工作中往往被忽视。在本文中,我们确定了这种设备变化,并朝着利用神经网络的可转移性迈出了进一步的一步。我们提出了一种新的基于对抗性学习的轮廓攻击(AL-PA),它使我们的神经网络能够学习设备不变性特征。我们在8个XMEGA微控制器上评估了我们的策略。不需要针对特定目标的预处理和多个分析设备,我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AL-PA: cross-device profiled side-channel attack using adversarial learning
In this paper, we focus on the portability issue in profiled side-channel attacks (SCAs) that arises due to significant device-to-device variations. Device discrepancy is inevitable in realistic attacks, but it is often neglected in research works. In this paper, we identify such device variations and take a further step towards leveraging the transferability of neural networks. We propose a novel adversarial learning-based profiled attack (AL-PA), which enables our neural network to learn device-invariant features. We evaluated our strategy on eight XMEGA microcontrollers. Without the need for target-specific preprocessing and multiple profiling devices, our approach has outperformed the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信