作者引文中姓名消歧的两种监督学习方法

Hui Han, C. Lee Giles, H. Zha, Cheng Li, Kostas Tsioutsiouliklis
{"title":"作者引文中姓名消歧的两种监督学习方法","authors":"Hui Han, C. Lee Giles, H. Zha, Cheng Li, Kostas Tsioutsiouliklis","doi":"10.1145/996350.996419","DOIUrl":null,"url":null,"abstract":"Due to name abbreviations, identical names, name misspellings, and pseudonyms in publications or bibliographies (citations), an author may have multiple names and multiple authors may share the same name. Such name ambiguity affects the performance of document retrieval, Web search, database integration, and may cause improper attribution to authors. We investigate two supervised learning approaches to disambiguate authors in the citations. One approach uses the naive Bayes probability model, a generative model; the other uses support vector machines (SVMs) [V. Vapnik (1995)] and the vector space representation of citations, a discriminative model. Both approaches utilize three types of citation attributes: coauthor names, the title of the paper, and the title of the journal or proceeding. We illustrate these two approaches on two types of data, one collected from the Web, mainly publication lists from homepages, the other collected from the DBLP citation databases.","PeriodicalId":362133,"journal":{"name":"Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"396","resultStr":"{\"title\":\"Two supervised learning approaches for name disambiguation in author citations\",\"authors\":\"Hui Han, C. Lee Giles, H. Zha, Cheng Li, Kostas Tsioutsiouliklis\",\"doi\":\"10.1145/996350.996419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to name abbreviations, identical names, name misspellings, and pseudonyms in publications or bibliographies (citations), an author may have multiple names and multiple authors may share the same name. Such name ambiguity affects the performance of document retrieval, Web search, database integration, and may cause improper attribution to authors. We investigate two supervised learning approaches to disambiguate authors in the citations. One approach uses the naive Bayes probability model, a generative model; the other uses support vector machines (SVMs) [V. Vapnik (1995)] and the vector space representation of citations, a discriminative model. Both approaches utilize three types of citation attributes: coauthor names, the title of the paper, and the title of the journal or proceeding. We illustrate these two approaches on two types of data, one collected from the Web, mainly publication lists from homepages, the other collected from the DBLP citation databases.\",\"PeriodicalId\":362133,\"journal\":{\"name\":\"Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"396\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/996350.996419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/996350.996419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 396

摘要

由于出版物或参考书目(引文)中的名称缩写、相同的名称、名称拼写错误和假名,一个作者可能有多个名称,多个作者可能共享同一个名称。这种名称歧义会影响文档检索、Web搜索和数据库集成的性能,并可能导致作者的不正确归属。我们研究了两种监督学习方法来消除引文中的作者歧义。一种方法使用朴素贝叶斯概率模型,一种生成模型;另一种使用支持向量机(svm) [V]。Vapnik(1995)]和引用的向量空间表示,一种判别模型。这两种方法都使用三种类型的引用属性:合著者姓名,论文标题,期刊或程序的标题。我们用两种类型的数据来说明这两种方法,一种数据来自网络,主要是来自主页的出版物列表,另一种数据来自DBLP引文数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two supervised learning approaches for name disambiguation in author citations
Due to name abbreviations, identical names, name misspellings, and pseudonyms in publications or bibliographies (citations), an author may have multiple names and multiple authors may share the same name. Such name ambiguity affects the performance of document retrieval, Web search, database integration, and may cause improper attribution to authors. We investigate two supervised learning approaches to disambiguate authors in the citations. One approach uses the naive Bayes probability model, a generative model; the other uses support vector machines (SVMs) [V. Vapnik (1995)] and the vector space representation of citations, a discriminative model. Both approaches utilize three types of citation attributes: coauthor names, the title of the paper, and the title of the journal or proceeding. We illustrate these two approaches on two types of data, one collected from the Web, mainly publication lists from homepages, the other collected from the DBLP citation databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信