P. Bhattacharya, B. Guillou, A. Li
求助PDF
{"title":"关于s -动机Steenrod代数的子代数的实现","authors":"P. Bhattacharya, B. Guillou, A. Li","doi":"10.1090/btran/114","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show that the finite subalgebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript double-struck upper R Baseline left-parenthesis 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}^\\mathbb {R}(1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, generated by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper S normal q Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">q</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {Sq}^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper S normal q squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">q</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {Sq}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-motivic Steenrod algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript double-struck upper R\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}^\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be given 128 different <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript double-struck upper R\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}^\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-module structures. We also show that all of these <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-modules can be realized as the cohomology of a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-local finite <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-motivic spectrum. The realization results are obtained using an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-motivic analogue of the Toda realization theorem. We notice that each realization of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript double-struck upper R Baseline left-parenthesis 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}^\\mathbb {R}(1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be expressed as a cofiber of an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-motivic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>v</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">v_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-self-map. The <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper C 2\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">C</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {C}_2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariant analogue of the above results then follows because of the Betti realization functor. We identify a relationship between the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper R normal upper O left-parenthesis normal upper C 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">R</mml:mi>\n <mml:mi mathvariant=\"normal\">O</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">C</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {RO}({\\mathrm {C}_2})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-graded Steenrod operations on a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper C 2\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">C</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {C}_2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariant space and the classical Steenrod operations on both its underlying space and its fixed-points. This technique is then used to identify the geometric fixed-point spectra of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper C 2\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">C</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {C}_2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariant realizations of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript normal upper C 2 Baseline left-parenthesis 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n ","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On realizations of the subalgebra 𝒜^{ℝ}(1) of the ℝ-motivic Steenrod algebra\",\"authors\":\"P. Bhattacharya, B. Guillou, A. Li\",\"doi\":\"10.1090/btran/114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show that the finite subalgebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Superscript double-struck upper R Baseline left-parenthesis 1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}^\\\\mathbb {R}(1)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, generated by <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper S normal q Superscript 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">q</mml:mi>\\n </mml:mrow>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {Sq}^1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper S normal q squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">q</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {Sq}^2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-motivic Steenrod algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Superscript double-struck upper R\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}^\\\\mathbb {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be given 128 different <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Superscript double-struck upper R\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}^\\\\mathbb {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-module structures. We also show that all of these <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-modules can be realized as the cohomology of a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-local finite <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-motivic spectrum. The realization results are obtained using an <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-motivic analogue of the Toda realization theorem. We notice that each realization of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Superscript double-struck upper R Baseline left-parenthesis 1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}^\\\\mathbb {R}(1)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be expressed as a cofiber of an <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-motivic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"v 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>v</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">v_1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-self-map. The <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper C 2\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathrm {C}_2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-equivariant analogue of the above results then follows because of the Betti realization functor. We identify a relationship between the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper R normal upper O left-parenthesis normal upper C 2 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">R</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">O</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {RO}({\\\\mathrm {C}_2})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-graded Steenrod operations on a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper C 2\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathrm {C}_2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-equivariant space and the classical Steenrod operations on both its underlying space and its fixed-points. This technique is then used to identify the geometric fixed-point spectra of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper C 2\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathrm {C}_2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-equivariant realizations of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Superscript normal upper C 2 Baseline left-parenthesis 1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n \",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用