基于分布估计的非接触式手部识别

J. Doublet, O. Lepetit, M. Revenu
{"title":"基于分布估计的非接触式手部识别","authors":"J. Doublet, O. Lepetit, M. Revenu","doi":"10.1109/BCC.2007.4430547","DOIUrl":null,"url":null,"abstract":"More and more research have been developed very recently for automatic hand recognition. This paper proposes a new method for contactless hand authentication in complex images with low cost devices. Our system uses skin color and hand shape information for hand detection process. Next, the palm is extracted and characterized by a bank of Gabor filters. Finally, the palm features are compared with a distribution estimation given an optimal discrimination. The experimental results present an error rate lower than 1.7% with a population of 49 people.","PeriodicalId":389417,"journal":{"name":"2007 Biometrics Symposium","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Contactless Hand Recognition Based on Distribution Estimation\",\"authors\":\"J. Doublet, O. Lepetit, M. Revenu\",\"doi\":\"10.1109/BCC.2007.4430547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More and more research have been developed very recently for automatic hand recognition. This paper proposes a new method for contactless hand authentication in complex images with low cost devices. Our system uses skin color and hand shape information for hand detection process. Next, the palm is extracted and characterized by a bank of Gabor filters. Finally, the palm features are compared with a distribution estimation given an optimal discrimination. The experimental results present an error rate lower than 1.7% with a population of 49 people.\",\"PeriodicalId\":389417,\"journal\":{\"name\":\"2007 Biometrics Symposium\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Biometrics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCC.2007.4430547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2007.4430547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

近年来,对自动识别技术的研究越来越多。本文提出了一种基于低成本设备的复杂图像非接触式手部认证新方法。我们的系统使用皮肤颜色和手部形状信息进行手部检测。接下来,棕榈提取和特征的银行Gabor过滤器。最后,将手掌特征与给定最优判别的分布估计进行比较。实验结果表明,在49人的人群中,错误率低于1.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contactless Hand Recognition Based on Distribution Estimation
More and more research have been developed very recently for automatic hand recognition. This paper proposes a new method for contactless hand authentication in complex images with low cost devices. Our system uses skin color and hand shape information for hand detection process. Next, the palm is extracted and characterized by a bank of Gabor filters. Finally, the palm features are compared with a distribution estimation given an optimal discrimination. The experimental results present an error rate lower than 1.7% with a population of 49 people.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信