基于神经子目标搜索的路径规划

B. Baginski, M. Eldracher
{"title":"基于神经子目标搜索的路径规划","authors":"B. Baginski, M. Eldracher","doi":"10.1109/ICNN.1994.374662","DOIUrl":null,"url":null,"abstract":"A system for robot path planning is presented, that is able to find useful and efficient subgoals in an arbitrary environment. The system consists of two pairs of separately trained networks and an underlying layer of learning units. The network's training is completely based on the most elementary sensoric informations. The created solutions in two and three dimensional simulation environments prove the networks capability to build up a meaningful world model that is effectively applied to the tasks.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Path planning with neural subgoal search\",\"authors\":\"B. Baginski, M. Eldracher\",\"doi\":\"10.1109/ICNN.1994.374662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A system for robot path planning is presented, that is able to find useful and efficient subgoals in an arbitrary environment. The system consists of two pairs of separately trained networks and an underlying layer of learning units. The network's training is completely based on the most elementary sensoric informations. The created solutions in two and three dimensional simulation environments prove the networks capability to build up a meaningful world model that is effectively applied to the tasks.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一个机器人路径规划系统,该系统能够在任意环境中找到有用且高效的子目标。该系统由两对单独训练的网络和底层的学习单元组成。网络的训练完全基于最基本的感官信息。在二维和三维仿真环境中创建的解决方案证明了网络建立有效应用于任务的有意义的世界模型的能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path planning with neural subgoal search
A system for robot path planning is presented, that is able to find useful and efficient subgoals in an arbitrary environment. The system consists of two pairs of separately trained networks and an underlying layer of learning units. The network's training is completely based on the most elementary sensoric informations. The created solutions in two and three dimensional simulation environments prove the networks capability to build up a meaningful world model that is effectively applied to the tasks.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信