一种新的双线性三次卷积插值方法用于数字图像缩放

H. Moon, Kyeong-Ri Ko, Juhyun Shin, S. Pan
{"title":"一种新的双线性三次卷积插值方法用于数字图像缩放","authors":"H. Moon, Kyeong-Ri Ko, Juhyun Shin, S. Pan","doi":"10.1145/2554850.2559913","DOIUrl":null,"url":null,"abstract":"As the better high quality image is required for digital image scaling, longer processing time is required so the technology that can make the high quality image quickly is needed. We propose the double linear--cubic convolution interpolation creating the high quality image with low complexity. When compared to peak signal-to-noise ratio(PSNR) and computation time, the proposed interpolation provided better PSNR and low complexity than bicubic convolution interpolation.","PeriodicalId":285655,"journal":{"name":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel double linear-cubic convolution interpolation for digital image scaling\",\"authors\":\"H. Moon, Kyeong-Ri Ko, Juhyun Shin, S. Pan\",\"doi\":\"10.1145/2554850.2559913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the better high quality image is required for digital image scaling, longer processing time is required so the technology that can make the high quality image quickly is needed. We propose the double linear--cubic convolution interpolation creating the high quality image with low complexity. When compared to peak signal-to-noise ratio(PSNR) and computation time, the proposed interpolation provided better PSNR and low complexity than bicubic convolution interpolation.\",\"PeriodicalId\":285655,\"journal\":{\"name\":\"Proceedings of the 29th Annual ACM Symposium on Applied Computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th Annual ACM Symposium on Applied Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554850.2559913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554850.2559913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于数字图像缩放需要更好的高质量图像,因此需要更长的处理时间,因此需要能够快速生成高质量图像的技术。我们提出了双线性-三次卷积插值方法,以产生低复杂度的高质量图像。对比峰值信噪比(PSNR)和计算时间,所提插值比双三次卷积插值具有更好的PSNR和更低的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel double linear-cubic convolution interpolation for digital image scaling
As the better high quality image is required for digital image scaling, longer processing time is required so the technology that can make the high quality image quickly is needed. We propose the double linear--cubic convolution interpolation creating the high quality image with low complexity. When compared to peak signal-to-noise ratio(PSNR) and computation time, the proposed interpolation provided better PSNR and low complexity than bicubic convolution interpolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信