导数自由迭代法的收敛性

I. Argyros, S. George
{"title":"导数自由迭代法的收敛性","authors":"I. Argyros, S. George","doi":"10.37193/cmi.2019.01.03","DOIUrl":null,"url":null,"abstract":"We present the local as well as the semi-local convergence of some iterative methods free of derivatives for Banach space valued operators. These methods contain the secant and the Kurchatov method as special cases. The convergence is based on weak hypotheses specializing to Lipschitz continuous or Holder continuous hypotheses. The results are of theoretical and practical interest. In particular the method is compared favorably ¨ to other methods using concrete numerical examples to solve systems of equations containing a nondifferentiable term.","PeriodicalId":112946,"journal":{"name":"Creative Mathematics and Informatics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence of derivative free iterative methods\",\"authors\":\"I. Argyros, S. George\",\"doi\":\"10.37193/cmi.2019.01.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the local as well as the semi-local convergence of some iterative methods free of derivatives for Banach space valued operators. These methods contain the secant and the Kurchatov method as special cases. The convergence is based on weak hypotheses specializing to Lipschitz continuous or Holder continuous hypotheses. The results are of theoretical and practical interest. In particular the method is compared favorably ¨ to other methods using concrete numerical examples to solve systems of equations containing a nondifferentiable term.\",\"PeriodicalId\":112946,\"journal\":{\"name\":\"Creative Mathematics and Informatics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Creative Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37193/cmi.2019.01.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Creative Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37193/cmi.2019.01.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给出了Banach空间值算子的一些无导数迭代方法的局部收敛性和半局部收敛性。这些方法包含割线法和库尔恰托夫法作为特例。收敛性基于弱假设,特别是Lipschitz连续或Holder连续假设。研究结果具有一定的理论和实际意义。特别地,用具体的数值例子来求解含有不可微项的方程组的方法,将这种方法与其他方法相比是有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of derivative free iterative methods
We present the local as well as the semi-local convergence of some iterative methods free of derivatives for Banach space valued operators. These methods contain the secant and the Kurchatov method as special cases. The convergence is based on weak hypotheses specializing to Lipschitz continuous or Holder continuous hypotheses. The results are of theoretical and practical interest. In particular the method is compared favorably ¨ to other methods using concrete numerical examples to solve systems of equations containing a nondifferentiable term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信