概念漂移下分类的自适应在线学习

Kanu Goel, Shalini Batra
{"title":"概念漂移下分类的自适应在线学习","authors":"Kanu Goel, Shalini Batra","doi":"10.1504/IJCSE.2021.115099","DOIUrl":null,"url":null,"abstract":"In machine learning and predictive analytics, the underlying data distributions tend to change with the course of time known as concept drift. Accurate labelling in case of supervised learning algorithms is essential to build consistent ensemble models. However, several real-world applications suffer from drifting data concepts which leads to deterioration in the performance of prediction systems. To tackle these challenges, we study various concept drift handling approaches which identify major types of drift patterns such as abrupt, gradual, and recurring in drifting data streams. This study also highlights the need for adaptive algorithms and demonstrates comparison of various state-of-the-art drift handling techniques by analysing their classification accuracy on artificially generated drifting data streams and real datasets.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive online learning for classification under concept drift\",\"authors\":\"Kanu Goel, Shalini Batra\",\"doi\":\"10.1504/IJCSE.2021.115099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In machine learning and predictive analytics, the underlying data distributions tend to change with the course of time known as concept drift. Accurate labelling in case of supervised learning algorithms is essential to build consistent ensemble models. However, several real-world applications suffer from drifting data concepts which leads to deterioration in the performance of prediction systems. To tackle these challenges, we study various concept drift handling approaches which identify major types of drift patterns such as abrupt, gradual, and recurring in drifting data streams. This study also highlights the need for adaptive algorithms and demonstrates comparison of various state-of-the-art drift handling techniques by analysing their classification accuracy on artificially generated drifting data streams and real datasets.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSE.2021.115099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2021.115099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在机器学习和预测分析中,底层数据分布往往会随着时间的推移而变化,这被称为概念漂移。在监督学习算法的情况下,准确的标记对于建立一致的集成模型至关重要。然而,一些实际应用受到数据概念漂移的影响,导致预测系统的性能下降。为了应对这些挑战,我们研究了各种概念漂移处理方法,这些方法确定了漂移数据流中主要类型的漂移模式,如突然、渐进和重复。本研究还强调了自适应算法的必要性,并通过分析其在人工生成的漂移数据流和实际数据集上的分类精度,对各种最先进的漂移处理技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive online learning for classification under concept drift
In machine learning and predictive analytics, the underlying data distributions tend to change with the course of time known as concept drift. Accurate labelling in case of supervised learning algorithms is essential to build consistent ensemble models. However, several real-world applications suffer from drifting data concepts which leads to deterioration in the performance of prediction systems. To tackle these challenges, we study various concept drift handling approaches which identify major types of drift patterns such as abrupt, gradual, and recurring in drifting data streams. This study also highlights the need for adaptive algorithms and demonstrates comparison of various state-of-the-art drift handling techniques by analysing their classification accuracy on artificially generated drifting data streams and real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信