像素级相似度融合图像分类

A. P. James
{"title":"像素级相似度融合图像分类","authors":"A. P. James","doi":"10.1109/SSD.2010.5585518","DOIUrl":null,"url":null,"abstract":"Recent research shows that local similarity calculations play a significant role in improving the recognition performance of template matching systems. We present a new scheme for parametric similarity calculation and fusion for image classification. State-of-the-art recognition results are obtained using the proposed method for a difficult task involving face images.","PeriodicalId":432382,"journal":{"name":"2010 7th International Multi- Conference on Systems, Signals and Devices","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pixel-level similarity fusion for image classification\",\"authors\":\"A. P. James\",\"doi\":\"10.1109/SSD.2010.5585518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research shows that local similarity calculations play a significant role in improving the recognition performance of template matching systems. We present a new scheme for parametric similarity calculation and fusion for image classification. State-of-the-art recognition results are obtained using the proposed method for a difficult task involving face images.\",\"PeriodicalId\":432382,\"journal\":{\"name\":\"2010 7th International Multi- Conference on Systems, Signals and Devices\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th International Multi- Conference on Systems, Signals and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2010.5585518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th International Multi- Conference on Systems, Signals and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2010.5585518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来的研究表明,局部相似度计算对提高模板匹配系统的识别性能起着重要的作用。提出了一种用于图像分类的参数相似度计算与融合的新方案。对于涉及人脸图像的复杂任务,本文提出的方法获得了最先进的识别结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pixel-level similarity fusion for image classification
Recent research shows that local similarity calculations play a significant role in improving the recognition performance of template matching systems. We present a new scheme for parametric similarity calculation and fusion for image classification. State-of-the-art recognition results are obtained using the proposed method for a difficult task involving face images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信