自适应非参数加权特征提取用于高光谱图像分类

Bor-Chen Kuo, Shih-Syun Lin, Hsin-Hua Ho, Jinn-Min Yang
{"title":"自适应非参数加权特征提取用于高光谱图像分类","authors":"Bor-Chen Kuo, Shih-Syun Lin, Hsin-Hua Ho, Jinn-Min Yang","doi":"10.1109/WHISPERS.2009.5288979","DOIUrl":null,"url":null,"abstract":"In this study, a novel classifier ensemble method named adaptive nonparametric weighted feature extraction (AdaNWFE) is proposed. This new concept is deduced from AdaBoost and NWFE. The main idea of AdaNWFE is adaptive in the sense that subsequent feature spaces are tweaked in favor of those instances misclassified by classifiers in the previous feature space. All training samples are projected to these feature spaces to train various classifiers and then constitute a multiple classifier system. The experimental results based on two hyperspectral data sets show that the proposed algorithm can generate better classification results than only applying NWFE.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive nonparametric weighed feature extraction for hyperspectral image classification\",\"authors\":\"Bor-Chen Kuo, Shih-Syun Lin, Hsin-Hua Ho, Jinn-Min Yang\",\"doi\":\"10.1109/WHISPERS.2009.5288979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel classifier ensemble method named adaptive nonparametric weighted feature extraction (AdaNWFE) is proposed. This new concept is deduced from AdaBoost and NWFE. The main idea of AdaNWFE is adaptive in the sense that subsequent feature spaces are tweaked in favor of those instances misclassified by classifiers in the previous feature space. All training samples are projected to these feature spaces to train various classifiers and then constitute a multiple classifier system. The experimental results based on two hyperspectral data sets show that the proposed algorithm can generate better classification results than only applying NWFE.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5288979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5288979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的分类器集成方法——自适应非参数加权特征提取(AdaNWFE)。这个新概念是由AdaBoost和NWFE推导出来的。AdaNWFE的主要思想是自适应的,在某种意义上,后续的特征空间被调整,以支持那些在前一个特征空间中被分类器错误分类的实例。将所有的训练样本投影到这些特征空间中训练各种分类器,从而构成一个多分类器系统。基于两个高光谱数据集的实验结果表明,该算法比仅应用NWFE能产生更好的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive nonparametric weighed feature extraction for hyperspectral image classification
In this study, a novel classifier ensemble method named adaptive nonparametric weighted feature extraction (AdaNWFE) is proposed. This new concept is deduced from AdaBoost and NWFE. The main idea of AdaNWFE is adaptive in the sense that subsequent feature spaces are tweaked in favor of those instances misclassified by classifiers in the previous feature space. All training samples are projected to these feature spaces to train various classifiers and then constitute a multiple classifier system. The experimental results based on two hyperspectral data sets show that the proposed algorithm can generate better classification results than only applying NWFE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信