基于物联网的室内空气污染物灰色关联评价系统

Krati Rastogi, Divya Lohani, D. Acharya
{"title":"基于物联网的室内空气污染物灰色关联评价系统","authors":"Krati Rastogi, Divya Lohani, D. Acharya","doi":"10.1109/COMSNETS48256.2020.9027308","DOIUrl":null,"url":null,"abstract":"Determination of Indoor Air Quality (IAQ) requires measurement and analysis of all the indoor air parameters. Often, the contribution of some parameters is substantial while that of others is meagre. This work aims to develop an IoT system for monitoring the concentrations of indoor air pollutants. Grey Relational Analysis (GRA) is then used to evaluate all the measured indoor air pollutants and select the ones which influence IAQ the most. The selected parameters are then used to build IAQ forecast model using Artificial Neural Networks (ANN). The accuracy of the ANN based forecast model is measured using mean absolute percentage error (MAPE) and coefficient of determination.","PeriodicalId":265871,"journal":{"name":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An IoT-based System to Evaluate Indoor Air Pollutants Using Grey Relational Analysis\",\"authors\":\"Krati Rastogi, Divya Lohani, D. Acharya\",\"doi\":\"10.1109/COMSNETS48256.2020.9027308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determination of Indoor Air Quality (IAQ) requires measurement and analysis of all the indoor air parameters. Often, the contribution of some parameters is substantial while that of others is meagre. This work aims to develop an IoT system for monitoring the concentrations of indoor air pollutants. Grey Relational Analysis (GRA) is then used to evaluate all the measured indoor air pollutants and select the ones which influence IAQ the most. The selected parameters are then used to build IAQ forecast model using Artificial Neural Networks (ANN). The accuracy of the ANN based forecast model is measured using mean absolute percentage error (MAPE) and coefficient of determination.\",\"PeriodicalId\":265871,\"journal\":{\"name\":\"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"volume\":\"268 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS48256.2020.9027308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS48256.2020.9027308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

室内空气质量的测定需要对室内空气的各项参数进行测量和分析。通常,某些参数的贡献很大,而其他参数的贡献很小。这项工作旨在开发一个物联网系统,用于监测室内空气污染物的浓度。然后利用灰色关联分析(GRA)对所有测量到的室内空气污染物进行评价,筛选出对室内空气质量影响最大的污染物。然后利用所选择的参数,利用人工神经网络(ANN)建立室内空气质量预测模型。利用平均绝对百分比误差(MAPE)和决定系数来衡量基于人工神经网络的预测模型的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An IoT-based System to Evaluate Indoor Air Pollutants Using Grey Relational Analysis
Determination of Indoor Air Quality (IAQ) requires measurement and analysis of all the indoor air parameters. Often, the contribution of some parameters is substantial while that of others is meagre. This work aims to develop an IoT system for monitoring the concentrations of indoor air pollutants. Grey Relational Analysis (GRA) is then used to evaluate all the measured indoor air pollutants and select the ones which influence IAQ the most. The selected parameters are then used to build IAQ forecast model using Artificial Neural Networks (ANN). The accuracy of the ANN based forecast model is measured using mean absolute percentage error (MAPE) and coefficient of determination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信