遮挡鲁棒自适应模板跟踪

H. Nguyen, M. Worring, R. V. D. Boomgaard
{"title":"遮挡鲁棒自适应模板跟踪","authors":"H. Nguyen, M. Worring, R. V. D. Boomgaard","doi":"10.1109/ICCV.2001.937587","DOIUrl":null,"url":null,"abstract":"We propose a new method for tracking rigid objects in image sequences using template matching. A Kalman filter is used to make the template adapt to changes in object orientation or illumination. This approach is novel since the Kalman filter has been used in tracking mainly for smoothing the object trajectory. The performance of the Kalman filter is further improved by employing a robust and adaptive filtering algorithm. Special attention is paid to occlusion handling.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":"{\"title\":\"Occlusion robust adaptive template tracking\",\"authors\":\"H. Nguyen, M. Worring, R. V. D. Boomgaard\",\"doi\":\"10.1109/ICCV.2001.937587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method for tracking rigid objects in image sequences using template matching. A Kalman filter is used to make the template adapt to changes in object orientation or illumination. This approach is novel since the Kalman filter has been used in tracking mainly for smoothing the object trajectory. The performance of the Kalman filter is further improved by employing a robust and adaptive filtering algorithm. Special attention is paid to occlusion handling.\",\"PeriodicalId\":429441,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2001.937587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

摘要

提出了一种基于模板匹配的图像序列中刚性目标跟踪方法。使用卡尔曼滤波器使模板适应物体方向或光照的变化。这种方法是新颖的,因为卡尔曼滤波在跟踪中主要用于平滑目标轨迹。采用鲁棒自适应滤波算法进一步提高了卡尔曼滤波的性能。特别注意的是遮挡处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occlusion robust adaptive template tracking
We propose a new method for tracking rigid objects in image sequences using template matching. A Kalman filter is used to make the template adapt to changes in object orientation or illumination. This approach is novel since the Kalman filter has been used in tracking mainly for smoothing the object trajectory. The performance of the Kalman filter is further improved by employing a robust and adaptive filtering algorithm. Special attention is paid to occlusion handling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信