{"title":"遮挡鲁棒自适应模板跟踪","authors":"H. Nguyen, M. Worring, R. V. D. Boomgaard","doi":"10.1109/ICCV.2001.937587","DOIUrl":null,"url":null,"abstract":"We propose a new method for tracking rigid objects in image sequences using template matching. A Kalman filter is used to make the template adapt to changes in object orientation or illumination. This approach is novel since the Kalman filter has been used in tracking mainly for smoothing the object trajectory. The performance of the Kalman filter is further improved by employing a robust and adaptive filtering algorithm. Special attention is paid to occlusion handling.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":"{\"title\":\"Occlusion robust adaptive template tracking\",\"authors\":\"H. Nguyen, M. Worring, R. V. D. Boomgaard\",\"doi\":\"10.1109/ICCV.2001.937587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method for tracking rigid objects in image sequences using template matching. A Kalman filter is used to make the template adapt to changes in object orientation or illumination. This approach is novel since the Kalman filter has been used in tracking mainly for smoothing the object trajectory. The performance of the Kalman filter is further improved by employing a robust and adaptive filtering algorithm. Special attention is paid to occlusion handling.\",\"PeriodicalId\":429441,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2001.937587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a new method for tracking rigid objects in image sequences using template matching. A Kalman filter is used to make the template adapt to changes in object orientation or illumination. This approach is novel since the Kalman filter has been used in tracking mainly for smoothing the object trajectory. The performance of the Kalman filter is further improved by employing a robust and adaptive filtering algorithm. Special attention is paid to occlusion handling.