Aurora大词汇基线系统的性能分析

N. Parihar, J. Picone, D. Pearce, H. Hirsch
{"title":"Aurora大词汇基线系统的性能分析","authors":"N. Parihar, J. Picone, D. Pearce, H. Hirsch","doi":"10.5281/ZENODO.38362","DOIUrl":null,"url":null,"abstract":"In this paper, we present the design and analysis of the baseline recognition system used for ETSI Aurora large vocabulary (ALV) evaluation. The experimental paradigm is presented along with the results from a number of experiments designed to minimize the computational requirements for the system. The ALV baseline system achieved a WER of 14.0% on the standard 5K Wall Street Journal task, and required 4 xRT for training and 15 xRT for decoding (on an 800 MHz Pentium processor). It is shown that increasing the sampling frequency from 8 kHz to 16 kHz improves performance significantly only for the noisy test conditions. Utterance detection resulted in significant improvements only on the noisy conditions for the mismatched training conditions. Use of the DSR standard VQ-based compression algorithm did not result in a significant degradation. The model mismatch and microphone mismatch resulted in a relative increase in WER by 300% and 200%, respectively.","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Performance analysis of the Aurora large vocabulary baseline system\",\"authors\":\"N. Parihar, J. Picone, D. Pearce, H. Hirsch\",\"doi\":\"10.5281/ZENODO.38362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the design and analysis of the baseline recognition system used for ETSI Aurora large vocabulary (ALV) evaluation. The experimental paradigm is presented along with the results from a number of experiments designed to minimize the computational requirements for the system. The ALV baseline system achieved a WER of 14.0% on the standard 5K Wall Street Journal task, and required 4 xRT for training and 15 xRT for decoding (on an 800 MHz Pentium processor). It is shown that increasing the sampling frequency from 8 kHz to 16 kHz improves performance significantly only for the noisy test conditions. Utterance detection resulted in significant improvements only on the noisy conditions for the mismatched training conditions. Use of the DSR standard VQ-based compression algorithm did not result in a significant degradation. The model mismatch and microphone mismatch resulted in a relative increase in WER by 300% and 200%, respectively.\",\"PeriodicalId\":347658,\"journal\":{\"name\":\"2004 12th European Signal Processing Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 12th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.38362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

摘要

本文介绍了用于ETSI Aurora大词汇量(ALV)评价的基线识别系统的设计和分析。实验范例与一些实验的结果一起提出,这些实验旨在最大限度地减少系统的计算需求。ALV基线系统在标准的5K华尔街日报任务上实现了14.0%的WER,并且需要4 xRT进行训练,15 xRT进行解码(在800 MHz的奔腾处理器上)。结果表明,仅在有噪声的测试条件下,将采样频率从8 kHz提高到16 kHz可显著提高性能。在训练条件不匹配的情况下,语音检测只在有噪声的情况下产生显著的改善。使用DSR标准的基于vq的压缩算法不会导致显著的性能下降。模型失配和麦克风失配分别导致了相对增加300%和200%的WER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of the Aurora large vocabulary baseline system
In this paper, we present the design and analysis of the baseline recognition system used for ETSI Aurora large vocabulary (ALV) evaluation. The experimental paradigm is presented along with the results from a number of experiments designed to minimize the computational requirements for the system. The ALV baseline system achieved a WER of 14.0% on the standard 5K Wall Street Journal task, and required 4 xRT for training and 15 xRT for decoding (on an 800 MHz Pentium processor). It is shown that increasing the sampling frequency from 8 kHz to 16 kHz improves performance significantly only for the noisy test conditions. Utterance detection resulted in significant improvements only on the noisy conditions for the mismatched training conditions. Use of the DSR standard VQ-based compression algorithm did not result in a significant degradation. The model mismatch and microphone mismatch resulted in a relative increase in WER by 300% and 200%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信