机器意识中深度学习与神经科学的整合

A. Mallakin
{"title":"机器意识中深度学习与神经科学的整合","authors":"A. Mallakin","doi":"10.34257/GJCSTDVOL19IS1PG21","DOIUrl":null,"url":null,"abstract":"Conscious processing is a useful aspect of brain function that can be used as a model to design artificial-intelligence devices. There are still certain computational features that our conscious brains possess, and which machines currently fail to perform those. This paper discusses the necessary elements needed to make the device conscious and suggests if those implemented, the resulting machine would likely to be considered conscious. Consciousness mainly presented as a computational tool that evolved to connect the modular organization of the brain. Specialized modules of the brain process information unconsciously and what we subjectively experience as consciousness is the global availability of data, which is made possible by a nonmodular global workspace. During conscious perception, the global neuronal work space at parieto-frontal part of the brain selectively amplifies relevant pieces of information. Supported by large neurons with long axons, which makes the long-distance connectivity possible, the selected portions of information stabilized and transmitted to all other brain modules. The brain areas that have structuring ability seem to match to a specific computational problem. The global workspace maintains this information in an active state for as long as it is needed. In this paper, a broad range of theories and specific problems have been discussed, which need to be solved to make the machine conscious. Later particular implications of these hypotheses for research approach in neuroscience and machine learning are debated.","PeriodicalId":340110,"journal":{"name":"Global journal of computer science and technology","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Integration of Deep Learning and Neuroscience for Machine Consciousness\",\"authors\":\"A. Mallakin\",\"doi\":\"10.34257/GJCSTDVOL19IS1PG21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conscious processing is a useful aspect of brain function that can be used as a model to design artificial-intelligence devices. There are still certain computational features that our conscious brains possess, and which machines currently fail to perform those. This paper discusses the necessary elements needed to make the device conscious and suggests if those implemented, the resulting machine would likely to be considered conscious. Consciousness mainly presented as a computational tool that evolved to connect the modular organization of the brain. Specialized modules of the brain process information unconsciously and what we subjectively experience as consciousness is the global availability of data, which is made possible by a nonmodular global workspace. During conscious perception, the global neuronal work space at parieto-frontal part of the brain selectively amplifies relevant pieces of information. Supported by large neurons with long axons, which makes the long-distance connectivity possible, the selected portions of information stabilized and transmitted to all other brain modules. The brain areas that have structuring ability seem to match to a specific computational problem. The global workspace maintains this information in an active state for as long as it is needed. In this paper, a broad range of theories and specific problems have been discussed, which need to be solved to make the machine conscious. Later particular implications of these hypotheses for research approach in neuroscience and machine learning are debated.\",\"PeriodicalId\":340110,\"journal\":{\"name\":\"Global journal of computer science and technology\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global journal of computer science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/GJCSTDVOL19IS1PG21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global journal of computer science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/GJCSTDVOL19IS1PG21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

意识处理是大脑功能的一个有用方面,可以用作设计人工智能设备的模型。我们有意识的大脑仍然拥有某些计算功能,而目前有哪些机器无法执行这些功能。本文讨论了使该设备具有意识所需的必要元素,并建议如果实现这些元素,那么最终的机器可能被认为是有意识的。意识主要表现为一种计算工具,它进化为连接大脑的模块化组织。大脑的专门模块无意识地处理信息,我们主观体验的意识是数据的全球可用性,这是由非模块化的全球工作空间实现的。在意识知觉过程中,大脑顶叶-额叶部分的全局神经元工作空间选择性地放大相关信息。在具有长轴突的大型神经元的支持下,这使得远距离连接成为可能,选定的部分信息稳定并传输到所有其他大脑模块。具有结构能力的大脑区域似乎与特定的计算问题相匹配。只要需要,全局工作空间就会将这些信息保持在活动状态。在本文中,讨论了广泛的理论和具体问题,需要解决的问题,使机器有意识。随后讨论了这些假设对神经科学和机器学习研究方法的特殊含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Integration of Deep Learning and Neuroscience for Machine Consciousness
Conscious processing is a useful aspect of brain function that can be used as a model to design artificial-intelligence devices. There are still certain computational features that our conscious brains possess, and which machines currently fail to perform those. This paper discusses the necessary elements needed to make the device conscious and suggests if those implemented, the resulting machine would likely to be considered conscious. Consciousness mainly presented as a computational tool that evolved to connect the modular organization of the brain. Specialized modules of the brain process information unconsciously and what we subjectively experience as consciousness is the global availability of data, which is made possible by a nonmodular global workspace. During conscious perception, the global neuronal work space at parieto-frontal part of the brain selectively amplifies relevant pieces of information. Supported by large neurons with long axons, which makes the long-distance connectivity possible, the selected portions of information stabilized and transmitted to all other brain modules. The brain areas that have structuring ability seem to match to a specific computational problem. The global workspace maintains this information in an active state for as long as it is needed. In this paper, a broad range of theories and specific problems have been discussed, which need to be solved to make the machine conscious. Later particular implications of these hypotheses for research approach in neuroscience and machine learning are debated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信