基于多光谱语义分割的夜视图像着色方法

Weiwen Zhang, Xiaojing Gu, Xingsheng Gu
{"title":"基于多光谱语义分割的夜视图像着色方法","authors":"Weiwen Zhang, Xiaojing Gu, Xingsheng Gu","doi":"10.1109/ANZCC.2018.8606609","DOIUrl":null,"url":null,"abstract":"Color night vision can map natural colors to nighttime images of multiple bands (e.g., visible and long-wave infrared (LWIR)). These colors can assist the observers in better and faster understanding images, thus improving their situational awareness and shortening the reaction time. In this paper, we present an effective method combining deep learning and category colors. It utilizes the semantic segmentation for image segmentation first, and then colorize the image according to categories to avoid the same color scheme and unnatural colors. We compare our method with some others quantitatively and qualitatively, such as global colorization by single lookup table, where we show significant improvements. In addition, it can be expanded according to different environments and applications because of the fixed category colors.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for Coloring Night-vision Imagery Based on Multispectral Semantic Segmentation\",\"authors\":\"Weiwen Zhang, Xiaojing Gu, Xingsheng Gu\",\"doi\":\"10.1109/ANZCC.2018.8606609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color night vision can map natural colors to nighttime images of multiple bands (e.g., visible and long-wave infrared (LWIR)). These colors can assist the observers in better and faster understanding images, thus improving their situational awareness and shortening the reaction time. In this paper, we present an effective method combining deep learning and category colors. It utilizes the semantic segmentation for image segmentation first, and then colorize the image according to categories to avoid the same color scheme and unnatural colors. We compare our method with some others quantitatively and qualitatively, such as global colorization by single lookup table, where we show significant improvements. In addition, it can be expanded according to different environments and applications because of the fixed category colors.\",\"PeriodicalId\":358801,\"journal\":{\"name\":\"2018 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC.2018.8606609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

彩色夜视可以将自然颜色映射到多个波段的夜间图像(例如,可见光和长波红外(LWIR))。这些颜色可以帮助观察者更好更快地理解图像,从而提高他们的态势感知能力,缩短反应时间。本文提出了一种结合深度学习和类别颜色的有效方法。它首先利用语义分割对图像进行分割,然后对图像进行分类着色,避免了配色方案相同和颜色不自然。我们将我们的方法与其他一些方法进行了定量和定性的比较,例如通过单个查找表进行全局着色,我们在其中显示了显著的改进。此外,由于类别颜色固定,可根据不同的环境和应用进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method for Coloring Night-vision Imagery Based on Multispectral Semantic Segmentation
Color night vision can map natural colors to nighttime images of multiple bands (e.g., visible and long-wave infrared (LWIR)). These colors can assist the observers in better and faster understanding images, thus improving their situational awareness and shortening the reaction time. In this paper, we present an effective method combining deep learning and category colors. It utilizes the semantic segmentation for image segmentation first, and then colorize the image according to categories to avoid the same color scheme and unnatural colors. We compare our method with some others quantitatively and qualitatively, such as global colorization by single lookup table, where we show significant improvements. In addition, it can be expanded according to different environments and applications because of the fixed category colors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信