n - gram密码子和递归神经网络(RNN)更新辉瑞- biontech mRNA疫苗

Hadj Ahmed Bouarara
{"title":"n - gram密码子和递归神经网络(RNN)更新辉瑞- biontech mRNA疫苗","authors":"Hadj Ahmed Bouarara","doi":"10.4018/ijssci.305838","DOIUrl":null,"url":null,"abstract":"In the fight against SARS-CoV-2, Pfizer BioNTech based on synthetic messenger RNA (mRNA) proved to be quicker and more effective even with a small dose of micrograms per injection. Unfortunately, such a vaccine requires very low temperatures to prevent degradation of mRNA. In this paper, we have developed three new models of recurrent neural network (1- simple LSTM 2-BDLSTM 3-BERT) using n-gram-codon technique for the codification of mRNA. The primary aim is to analyse the mRNA sequence and predict the stability/reactivity rates at various codon positions. The results of the predictions will be presented in the form of recommendations to support laboratories in updating Pfizer's BioNTech vaccine. The obtained results were validated by the Stanford OpenVaccine dataset and the evaluation measures recall, precision, f1-score, accuracy and loss.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"56 2-3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"N-Gram-Codon and Recurrent Neural Network (RNN) to Update Pfizer-BioNTech mRNA Vaccine\",\"authors\":\"Hadj Ahmed Bouarara\",\"doi\":\"10.4018/ijssci.305838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the fight against SARS-CoV-2, Pfizer BioNTech based on synthetic messenger RNA (mRNA) proved to be quicker and more effective even with a small dose of micrograms per injection. Unfortunately, such a vaccine requires very low temperatures to prevent degradation of mRNA. In this paper, we have developed three new models of recurrent neural network (1- simple LSTM 2-BDLSTM 3-BERT) using n-gram-codon technique for the codification of mRNA. The primary aim is to analyse the mRNA sequence and predict the stability/reactivity rates at various codon positions. The results of the predictions will be presented in the form of recommendations to support laboratories in updating Pfizer's BioNTech vaccine. The obtained results were validated by the Stanford OpenVaccine dataset and the evaluation measures recall, precision, f1-score, accuracy and loss.\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"56 2-3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijssci.305838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.305838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在与新冠病毒的斗争中,以合成信使RNA (mRNA)为基础的辉瑞生物技术公司(Pfizer BioNTech)在每次注射少量微克的情况下也能更快、更有效地对抗新冠病毒。不幸的是,这种疫苗需要非常低的温度来防止mRNA的降解。在本文中,我们利用n-gram密码子技术开发了三种新的递归神经网络模型(1-简单LSTM - 2-BDLSTM - 3-BERT),用于mRNA的编码。主要目的是分析mRNA序列并预测不同密码子位置的稳定性/反应率。预测结果将以建议的形式提出,以支持实验室更新辉瑞的BioNTech疫苗。获得的结果通过Stanford OpenVaccine数据集和评估指标recall、precision、f1-score、accuracy和loss进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N-Gram-Codon and Recurrent Neural Network (RNN) to Update Pfizer-BioNTech mRNA Vaccine
In the fight against SARS-CoV-2, Pfizer BioNTech based on synthetic messenger RNA (mRNA) proved to be quicker and more effective even with a small dose of micrograms per injection. Unfortunately, such a vaccine requires very low temperatures to prevent degradation of mRNA. In this paper, we have developed three new models of recurrent neural network (1- simple LSTM 2-BDLSTM 3-BERT) using n-gram-codon technique for the codification of mRNA. The primary aim is to analyse the mRNA sequence and predict the stability/reactivity rates at various codon positions. The results of the predictions will be presented in the form of recommendations to support laboratories in updating Pfizer's BioNTech vaccine. The obtained results were validated by the Stanford OpenVaccine dataset and the evaluation measures recall, precision, f1-score, accuracy and loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信