水下航行器主动偏航控制的仿生压力传感

A. Gao, M. Triantafyllou
{"title":"水下航行器主动偏航控制的仿生压力传感","authors":"A. Gao, M. Triantafyllou","doi":"10.1109/OCEANS.2012.6404844","DOIUrl":null,"url":null,"abstract":"A towed underwater vehicle equipped with a bio-inspired artificial lateral line (ALL) was constructed and tested with the goal of active detection and correction of the vehicle's angle of attack. Preliminary experiments demonstrate that a low number of sensors are sufficient to enable the discrimination between different orientations, and that a basic proportional controller is capable of keeping the vehicle aligned with the direction of flow. We propose that a model based controller could be developed to improve system response. Toward this, we derive a vehicle model based on a first-order 3D Rankine Source Panel Method, which is shown to be competent in estimating the pressure field in the region of interest during motion at constant angles of attack, and during execution of dynamic maneuvers. To solve the inverse problem of estimating the vehicle orientation given specific pressure measurements, an Unscented Kalman Filter is developed around the model. It is shown to provide a close estimation of the vehicle state using experimentally collected pressure measurements. This demonstrates that an artificial lateral line is a promising technology for dynamically mediating the angle of a body relative to the oncoming flow.","PeriodicalId":434023,"journal":{"name":"2012 Oceans","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Bio-inspired pressure sensing for active yaw control of underwater vehicles\",\"authors\":\"A. Gao, M. Triantafyllou\",\"doi\":\"10.1109/OCEANS.2012.6404844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A towed underwater vehicle equipped with a bio-inspired artificial lateral line (ALL) was constructed and tested with the goal of active detection and correction of the vehicle's angle of attack. Preliminary experiments demonstrate that a low number of sensors are sufficient to enable the discrimination between different orientations, and that a basic proportional controller is capable of keeping the vehicle aligned with the direction of flow. We propose that a model based controller could be developed to improve system response. Toward this, we derive a vehicle model based on a first-order 3D Rankine Source Panel Method, which is shown to be competent in estimating the pressure field in the region of interest during motion at constant angles of attack, and during execution of dynamic maneuvers. To solve the inverse problem of estimating the vehicle orientation given specific pressure measurements, an Unscented Kalman Filter is developed around the model. It is shown to provide a close estimation of the vehicle state using experimentally collected pressure measurements. This demonstrates that an artificial lateral line is a promising technology for dynamically mediating the angle of a body relative to the oncoming flow.\",\"PeriodicalId\":434023,\"journal\":{\"name\":\"2012 Oceans\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Oceans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2012.6404844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2012.6404844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

以主动探测和修正船舶迎角为目标,研制并测试了一种装有仿生人工侧线(ALL)的拖曳式水下航行器。初步实验表明,少量的传感器足以实现不同方向的区分,并且基本的比例控制器能够保持车辆与流量方向对齐。我们提出可以开发一种基于模型的控制器来改善系统响应。为此,我们推导了一个基于一阶三维朗肯源面板方法的飞行器模型,该模型被证明能够在恒定攻角运动和执行动态机动期间估计感兴趣区域的压力场。为了解决给定特定压力下飞行器方向估计的逆问题,围绕该模型开发了一个无气味卡尔曼滤波器。它被证明提供了一个接近的估计车辆状态使用实验收集的压力测量。这表明,人工侧线是一种很有前途的技术,可以动态调节物体相对于迎面流的角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-inspired pressure sensing for active yaw control of underwater vehicles
A towed underwater vehicle equipped with a bio-inspired artificial lateral line (ALL) was constructed and tested with the goal of active detection and correction of the vehicle's angle of attack. Preliminary experiments demonstrate that a low number of sensors are sufficient to enable the discrimination between different orientations, and that a basic proportional controller is capable of keeping the vehicle aligned with the direction of flow. We propose that a model based controller could be developed to improve system response. Toward this, we derive a vehicle model based on a first-order 3D Rankine Source Panel Method, which is shown to be competent in estimating the pressure field in the region of interest during motion at constant angles of attack, and during execution of dynamic maneuvers. To solve the inverse problem of estimating the vehicle orientation given specific pressure measurements, an Unscented Kalman Filter is developed around the model. It is shown to provide a close estimation of the vehicle state using experimentally collected pressure measurements. This demonstrates that an artificial lateral line is a promising technology for dynamically mediating the angle of a body relative to the oncoming flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信