伽罗瓦不可约性意味着KHT Shimura品种的上同性自由

P. Boyer
{"title":"伽罗瓦不可约性意味着KHT Shimura品种的上同性自由","authors":"P. Boyer","doi":"10.5802/jep.216","DOIUrl":null,"url":null,"abstract":"Given a KHT Shimura variety provided with an action of its unramified Hecke algebra $\\mathbb T$, \nwe proved in a previous work}, see also the paper of Caraiani-Scholze for other PEL Shimura \nvarieties, that its localized cohomology groups at a generic maximal ideal $\\mathfrak m$ of \n$\\mathbb T$, appear to be free. \nIn this work, we obtain the same result for $\\mathfrak m$ such that its associated \ngaloisian $\\overline{\\mathbb F}_l$-representation $\\overline{\\rho_{\\mathfrak m}}$ is irreducible.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Galois irreducibility implies cohomology freeness for KHT Shimura varieties\",\"authors\":\"P. Boyer\",\"doi\":\"10.5802/jep.216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a KHT Shimura variety provided with an action of its unramified Hecke algebra $\\\\mathbb T$, \\nwe proved in a previous work}, see also the paper of Caraiani-Scholze for other PEL Shimura \\nvarieties, that its localized cohomology groups at a generic maximal ideal $\\\\mathfrak m$ of \\n$\\\\mathbb T$, appear to be free. \\nIn this work, we obtain the same result for $\\\\mathfrak m$ such that its associated \\ngaloisian $\\\\overline{\\\\mathbb F}_l$-representation $\\\\overline{\\\\rho_{\\\\mathfrak m}}$ is irreducible.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给定一个具有未分枝Hecke代数作用的KHT Shimura变体$\mathbb T$,我们在之前的工作中证明了,另见Caraiani-Scholze关于其他PEL Shimura变体的论文,它在$\mathbb T$的一般极大理想$\mathfrak m$上的定域上同调群是自由的。在这项工作中,我们对$\mathfrak m$得到了相同的结果,使得其关联的伽罗式$\overline{\mathbb F}_l$ -表示$\overline{\rho_{\mathfrak m}}$是不可约的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galois irreducibility implies cohomology freeness for KHT Shimura varieties
Given a KHT Shimura variety provided with an action of its unramified Hecke algebra $\mathbb T$, we proved in a previous work}, see also the paper of Caraiani-Scholze for other PEL Shimura varieties, that its localized cohomology groups at a generic maximal ideal $\mathfrak m$ of $\mathbb T$, appear to be free. In this work, we obtain the same result for $\mathfrak m$ such that its associated galoisian $\overline{\mathbb F}_l$-representation $\overline{\rho_{\mathfrak m}}$ is irreducible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信