网络评论主题内容预测研究:基于双向情感分类的视角

Xiaogang Zhao, Ge Li, Hai Shen, Yiwei Dang, Jun Hou, Siwei Dong
{"title":"网络评论主题内容预测研究:基于双向情感分类的视角","authors":"Xiaogang Zhao, Ge Li, Hai Shen, Yiwei Dang, Jun Hou, Siwei Dong","doi":"10.1145/3584816.3584842","DOIUrl":null,"url":null,"abstract":"To solve the problem of coarse-grained results in the research of topic content prediction, this paper proposes a prediction method for the topic content from the perspective of bi-directional sentiment classification. Firstly, the method uses SnowNLP to classify the sentiment of online reviews; secondly, LDA model is applied to extract the topics and entropy is used to sort topics; finally, Word2Vec is applied to achieve the prediction of the topic content. Example calculation shows that this method effectively solves the problem of coarse-grained prediction results of online reviews’ topic content, and presents the prediction results from positive and negative sentiments. The average precision of positive topics is 86.67%, and the average precision of negative topics is 80.00%.","PeriodicalId":113982,"journal":{"name":"Proceedings of the 2023 6th International Conference on Computers in Management and Business","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Topic Content Prediction of Online Reviews: from the Perspective of Bi-directional Sentiment Classification\",\"authors\":\"Xiaogang Zhao, Ge Li, Hai Shen, Yiwei Dang, Jun Hou, Siwei Dong\",\"doi\":\"10.1145/3584816.3584842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of coarse-grained results in the research of topic content prediction, this paper proposes a prediction method for the topic content from the perspective of bi-directional sentiment classification. Firstly, the method uses SnowNLP to classify the sentiment of online reviews; secondly, LDA model is applied to extract the topics and entropy is used to sort topics; finally, Word2Vec is applied to achieve the prediction of the topic content. Example calculation shows that this method effectively solves the problem of coarse-grained prediction results of online reviews’ topic content, and presents the prediction results from positive and negative sentiments. The average precision of positive topics is 86.67%, and the average precision of negative topics is 80.00%.\",\"PeriodicalId\":113982,\"journal\":{\"name\":\"Proceedings of the 2023 6th International Conference on Computers in Management and Business\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 6th International Conference on Computers in Management and Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584816.3584842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 6th International Conference on Computers in Management and Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584816.3584842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决主题内容预测研究中结果粗粒度的问题,本文提出了一种双向情感分类视角下的主题内容预测方法。该方法首先利用SnowNLP对网络评论的情感进行分类;其次,采用LDA模型提取主题,并利用熵对主题进行排序;最后运用Word2Vec实现对主题内容的预测。实例计算表明,该方法有效地解决了在线评论主题内容的粗粒度预测问题,并给出了正面和负面情绪的预测结果。正面话题的平均准确率为86.67%,负面话题的平均准确率为80.00%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the Topic Content Prediction of Online Reviews: from the Perspective of Bi-directional Sentiment Classification
To solve the problem of coarse-grained results in the research of topic content prediction, this paper proposes a prediction method for the topic content from the perspective of bi-directional sentiment classification. Firstly, the method uses SnowNLP to classify the sentiment of online reviews; secondly, LDA model is applied to extract the topics and entropy is used to sort topics; finally, Word2Vec is applied to achieve the prediction of the topic content. Example calculation shows that this method effectively solves the problem of coarse-grained prediction results of online reviews’ topic content, and presents the prediction results from positive and negative sentiments. The average precision of positive topics is 86.67%, and the average precision of negative topics is 80.00%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信