基于PCNN的边缘检测方法

Xiaolong Tang, Zhongyu Tao, Panshi Tang, Jian-Pin Li
{"title":"基于PCNN的边缘检测方法","authors":"Xiaolong Tang, Zhongyu Tao, Panshi Tang, Jian-Pin Li","doi":"10.1109/ICCWAMTIP.2014.7073383","DOIUrl":null,"url":null,"abstract":"Pulse-Coupled Neural Network is known as third generation artificial neural network. It is created by visual cortex neurons, a synchronous pulse release phenomenon of mammals. Compare to traditional artificial neural network, PCNN has the characteristics of dynamic neural network, integrated space-time, automatic propagation and synchronous pulse release. PCNN has tendency for image retention information and edge detection.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Edge detection method based on PCNN\",\"authors\":\"Xiaolong Tang, Zhongyu Tao, Panshi Tang, Jian-Pin Li\",\"doi\":\"10.1109/ICCWAMTIP.2014.7073383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulse-Coupled Neural Network is known as third generation artificial neural network. It is created by visual cortex neurons, a synchronous pulse release phenomenon of mammals. Compare to traditional artificial neural network, PCNN has the characteristics of dynamic neural network, integrated space-time, automatic propagation and synchronous pulse release. PCNN has tendency for image retention information and edge detection.\",\"PeriodicalId\":211273,\"journal\":{\"name\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2014.7073383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

脉冲耦合神经网络被称为第三代人工神经网络。它是由视觉皮层神经元产生的,这是哺乳动物的一种同步脉冲释放现象。与传统人工神经网络相比,PCNN具有动态神经网络、时空集成、自动传播和脉冲同步释放等特点。PCNN具有图像保留信息和边缘检测的倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge detection method based on PCNN
Pulse-Coupled Neural Network is known as third generation artificial neural network. It is created by visual cortex neurons, a synchronous pulse release phenomenon of mammals. Compare to traditional artificial neural network, PCNN has the characteristics of dynamic neural network, integrated space-time, automatic propagation and synchronous pulse release. PCNN has tendency for image retention information and edge detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信