{"title":"使用人工神经网络的嵌入式应用和设备的本地监控","authors":"F. Bahnsen, Goerschwin Fey","doi":"10.1109/DSD.2019.00076","DOIUrl":null,"url":null,"abstract":"Reliability, security, and safety become even more challenging in times of the Internet of Things (IoT). Devices operate jointly in large distributed networks and may affect each other's functionality due to failures or attacks. Identifying abnormal system behavior is therefore the solution to protect the device itself and other network participants to ensure service availability and system integrity. We propose a monitor concept based on long short-term memory recurrent neural networks which adapts to new devices by learning the nominal behavior automatically. No fault model is needed to identify erroneous behavior. The monitor can operate locally on the device, so our approach addresses the limited bandwidth and connectivity of IoT devices. Experiments evaluate our approach for a simulated controller under varying runtime conditions.","PeriodicalId":217233,"journal":{"name":"2019 22nd Euromicro Conference on Digital System Design (DSD)","volume":"136 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Local Monitoring of Embedded Applications and Devices using Artificial Neural Networks\",\"authors\":\"F. Bahnsen, Goerschwin Fey\",\"doi\":\"10.1109/DSD.2019.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliability, security, and safety become even more challenging in times of the Internet of Things (IoT). Devices operate jointly in large distributed networks and may affect each other's functionality due to failures or attacks. Identifying abnormal system behavior is therefore the solution to protect the device itself and other network participants to ensure service availability and system integrity. We propose a monitor concept based on long short-term memory recurrent neural networks which adapts to new devices by learning the nominal behavior automatically. No fault model is needed to identify erroneous behavior. The monitor can operate locally on the device, so our approach addresses the limited bandwidth and connectivity of IoT devices. Experiments evaluate our approach for a simulated controller under varying runtime conditions.\",\"PeriodicalId\":217233,\"journal\":{\"name\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"136 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2019.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2019.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local Monitoring of Embedded Applications and Devices using Artificial Neural Networks
Reliability, security, and safety become even more challenging in times of the Internet of Things (IoT). Devices operate jointly in large distributed networks and may affect each other's functionality due to failures or attacks. Identifying abnormal system behavior is therefore the solution to protect the device itself and other network participants to ensure service availability and system integrity. We propose a monitor concept based on long short-term memory recurrent neural networks which adapts to new devices by learning the nominal behavior automatically. No fault model is needed to identify erroneous behavior. The monitor can operate locally on the device, so our approach addresses the limited bandwidth and connectivity of IoT devices. Experiments evaluate our approach for a simulated controller under varying runtime conditions.