基于全局优化方法的鲁棒分数预测控制设计

Aymen Rhouma, S. Hafsi
{"title":"基于全局优化方法的鲁棒分数预测控制设计","authors":"Aymen Rhouma, S. Hafsi","doi":"10.1109/SCC47175.2019.9116134","DOIUrl":null,"url":null,"abstract":"This paper provides a new approach to solve non-convex min-max predictive controller for fractional systems with real uncertain parameters. The Grünwald–Letnikov’s (GL) definition will be used as a fractional internal model to predict the plant future dynamic behavior. This definition consists in replacing the fractional order derivation operator of the adopted process representation by a discrete approximation. The controller parameters are obtained by resolving a min-max non-convex optimization problem. The resolution of this problem under constraints using a standard approach can give local solutions. Thus, we propose the use of the Genetic Algorithm (GA), which is a global optimization approach that consists to transforming the initial non-convex optimization problem to a convex one by means of variable transformations. The efficiency of the proposed robust fractional predictive controller is illustrated in simulation with an uncertain fractional system example.","PeriodicalId":133593,"journal":{"name":"2019 International Conference on Signal, Control and Communication (SCC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Robust Fractional Predictive Control using Global Optimization Approach\",\"authors\":\"Aymen Rhouma, S. Hafsi\",\"doi\":\"10.1109/SCC47175.2019.9116134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a new approach to solve non-convex min-max predictive controller for fractional systems with real uncertain parameters. The Grünwald–Letnikov’s (GL) definition will be used as a fractional internal model to predict the plant future dynamic behavior. This definition consists in replacing the fractional order derivation operator of the adopted process representation by a discrete approximation. The controller parameters are obtained by resolving a min-max non-convex optimization problem. The resolution of this problem under constraints using a standard approach can give local solutions. Thus, we propose the use of the Genetic Algorithm (GA), which is a global optimization approach that consists to transforming the initial non-convex optimization problem to a convex one by means of variable transformations. The efficiency of the proposed robust fractional predictive controller is illustrated in simulation with an uncertain fractional system example.\",\"PeriodicalId\":133593,\"journal\":{\"name\":\"2019 International Conference on Signal, Control and Communication (SCC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Signal, Control and Communication (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC47175.2019.9116134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Signal, Control and Communication (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC47175.2019.9116134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解具有真实不确定参数的分数阶系统的非凸最小-最大预测控制器的新方法。GL定义将被用作预测植物未来动态行为的分数阶内部模型。这个定义包括用离散近似代替所采用的过程表示的分数阶导数算子。通过求解最小-最大非凸优化问题得到控制器参数。用标准方法在约束条件下求解该问题,可以得到局部解。因此,我们提出使用遗传算法(GA),这是一种全局优化方法,包括通过变量变换将初始非凸优化问题转化为凸优化问题。通过一个不确定分数阶系统的仿真,验证了所提出的鲁棒分数阶预测控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Robust Fractional Predictive Control using Global Optimization Approach
This paper provides a new approach to solve non-convex min-max predictive controller for fractional systems with real uncertain parameters. The Grünwald–Letnikov’s (GL) definition will be used as a fractional internal model to predict the plant future dynamic behavior. This definition consists in replacing the fractional order derivation operator of the adopted process representation by a discrete approximation. The controller parameters are obtained by resolving a min-max non-convex optimization problem. The resolution of this problem under constraints using a standard approach can give local solutions. Thus, we propose the use of the Genetic Algorithm (GA), which is a global optimization approach that consists to transforming the initial non-convex optimization problem to a convex one by means of variable transformations. The efficiency of the proposed robust fractional predictive controller is illustrated in simulation with an uncertain fractional system example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信