广义Cauchy-Riemann系统的Dirichlet问题

M. Reissig, A. Timofeev
{"title":"广义Cauchy-Riemann系统的Dirichlet问题","authors":"M. Reissig, A. Timofeev","doi":"10.1080/02781070500087196","DOIUrl":null,"url":null,"abstract":"The article is devoted to the Dirichlet problem in the unit disk G for on ∂, Im w = h in z 0 = 1, where g is a given Hölder continuous function. The coefficient b belongs to a subspace of L 2(G) which is in general not contained in Lq(G), q > 2. Thus Vekua's theory is not applicable. Nevertheless we are able to prove the uniqueness of continuous solutions in .","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Dirichlet problems for generalized Cauchy–Riemann systems with singular coefficients\",\"authors\":\"M. Reissig, A. Timofeev\",\"doi\":\"10.1080/02781070500087196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to the Dirichlet problem in the unit disk G for on ∂, Im w = h in z 0 = 1, where g is a given Hölder continuous function. The coefficient b belongs to a subspace of L 2(G) which is in general not contained in Lq(G), q > 2. Thus Vekua's theory is not applicable. Nevertheless we are able to prove the uniqueness of continuous solutions in .\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070500087196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500087196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文致力于在∂,Im w = h in z 0 = 1的单位磁盘G中的Dirichlet问题,其中G是一个给定的Hölder连续函数。系数b属于l2 (G)的一个子空间,一般不包含在Lq(G)中,q > 2。因此,Vekua的理论并不适用。然而,我们能够证明连续解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirichlet problems for generalized Cauchy–Riemann systems with singular coefficients
The article is devoted to the Dirichlet problem in the unit disk G for on ∂, Im w = h in z 0 = 1, where g is a given Hölder continuous function. The coefficient b belongs to a subspace of L 2(G) which is in general not contained in Lq(G), q > 2. Thus Vekua's theory is not applicable. Nevertheless we are able to prove the uniqueness of continuous solutions in .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信