Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal
{"title":"PProCRC:用于细粒度分类的图像补丁的概率协作","authors":"Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal","doi":"10.1109/IVCNZ51579.2020.9290537","DOIUrl":null,"url":null,"abstract":"We present a conditional probabilistic framework for collaborative representation of image patches. It incorporates background compensation and outlier patch suppression into the main formulation itself, thus doing away with the need for pre-processing steps to handle the same. A closed form non-iterative solution of the cost function is derived. The proposed method (PProCRC) outperforms earlier CRC formulations: patch based (PCRC, GP-CRC) as well as the state-of-the-art probabilistic (ProCRC and EProCRC) on three fine-grained species recognition datasets (Oxford Flowers, Oxford-IIIT Pets and CUB Birds) using two CNN backbones (Vgg-19 and ResNet-50).","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PProCRC: Probabilistic Collaboration of Image Patches for Fine-grained Classification\",\"authors\":\"Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal\",\"doi\":\"10.1109/IVCNZ51579.2020.9290537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a conditional probabilistic framework for collaborative representation of image patches. It incorporates background compensation and outlier patch suppression into the main formulation itself, thus doing away with the need for pre-processing steps to handle the same. A closed form non-iterative solution of the cost function is derived. The proposed method (PProCRC) outperforms earlier CRC formulations: patch based (PCRC, GP-CRC) as well as the state-of-the-art probabilistic (ProCRC and EProCRC) on three fine-grained species recognition datasets (Oxford Flowers, Oxford-IIIT Pets and CUB Birds) using two CNN backbones (Vgg-19 and ResNet-50).\",\"PeriodicalId\":164317,\"journal\":{\"name\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVCNZ51579.2020.9290537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PProCRC: Probabilistic Collaboration of Image Patches for Fine-grained Classification
We present a conditional probabilistic framework for collaborative representation of image patches. It incorporates background compensation and outlier patch suppression into the main formulation itself, thus doing away with the need for pre-processing steps to handle the same. A closed form non-iterative solution of the cost function is derived. The proposed method (PProCRC) outperforms earlier CRC formulations: patch based (PCRC, GP-CRC) as well as the state-of-the-art probabilistic (ProCRC and EProCRC) on three fine-grained species recognition datasets (Oxford Flowers, Oxford-IIIT Pets and CUB Birds) using two CNN backbones (Vgg-19 and ResNet-50).