蜜蜂交配优化算法在负荷剖面聚类中的应用

M. Gavrilas, G. Gavrilas, C. Sfintes
{"title":"蜜蜂交配优化算法在负荷剖面聚类中的应用","authors":"M. Gavrilas, G. Gavrilas, C. Sfintes","doi":"10.1109/CIMSA.2010.5611759","DOIUrl":null,"url":null,"abstract":"A broad range of intelligent metering solutions in the form of Automated Meter Reading (AMR) or Advanced Metering Infrastructure (AMI) are used today in electrical networks to meet the challenges posed by the development of electricity markets. In parallel, Load Profiling (LP-ing) techniques based on intelligent software solutions, can be used to support market access of small consumers who are not equipped with digital meters. This paper proposes a new approach to the LP clustering problem based on the Honey-Bee Mating Optimization (HBMO) algorithm. The results show a good behavior of the proposed algorithm in terms of robustness and stability with respect to the structure of the database. The proposed approach requires fewer parameters to be calibrated, in comparison with other alternative methods.","PeriodicalId":162890,"journal":{"name":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Application of Honey Bee Mating Optimization algorithm to load profile clustering\",\"authors\":\"M. Gavrilas, G. Gavrilas, C. Sfintes\",\"doi\":\"10.1109/CIMSA.2010.5611759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A broad range of intelligent metering solutions in the form of Automated Meter Reading (AMR) or Advanced Metering Infrastructure (AMI) are used today in electrical networks to meet the challenges posed by the development of electricity markets. In parallel, Load Profiling (LP-ing) techniques based on intelligent software solutions, can be used to support market access of small consumers who are not equipped with digital meters. This paper proposes a new approach to the LP clustering problem based on the Honey-Bee Mating Optimization (HBMO) algorithm. The results show a good behavior of the proposed algorithm in terms of robustness and stability with respect to the structure of the database. The proposed approach requires fewer parameters to be calibrated, in comparison with other alternative methods.\",\"PeriodicalId\":162890,\"journal\":{\"name\":\"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2010.5611759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2010.5611759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

为了应对电力市场发展带来的挑战,目前电网中采用了各种各样的智能计量解决方案,包括自动抄表(AMR)或高级计量基础设施(AMI)。与此同时,基于智能软件解决方案的负载分析(LP-ing)技术可用于支持没有配备数字电表的小型消费者的市场准入。提出了一种基于蜜蜂交配优化(HBMO)算法的LP聚类问题的新方法。结果表明,该算法在数据库结构方面具有良好的鲁棒性和稳定性。与其他替代方法相比,所提出的方法需要校准的参数较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Honey Bee Mating Optimization algorithm to load profile clustering
A broad range of intelligent metering solutions in the form of Automated Meter Reading (AMR) or Advanced Metering Infrastructure (AMI) are used today in electrical networks to meet the challenges posed by the development of electricity markets. In parallel, Load Profiling (LP-ing) techniques based on intelligent software solutions, can be used to support market access of small consumers who are not equipped with digital meters. This paper proposes a new approach to the LP clustering problem based on the Honey-Bee Mating Optimization (HBMO) algorithm. The results show a good behavior of the proposed algorithm in terms of robustness and stability with respect to the structure of the database. The proposed approach requires fewer parameters to be calibrated, in comparison with other alternative methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信