应用字形、词和音节信息进行语码转换句的语言识别

Y. Yeong, T. Tan
{"title":"应用字形、词和音节信息进行语码转换句的语言识别","authors":"Y. Yeong, T. Tan","doi":"10.1109/IALP.2011.34","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an automatic language identification approach for code switching sentences by using the morphological structures and sequence of the syllable. The approach was tested on Malay-English code switching sentences. The proposed language identification approach achieves 90.75% in term of accuracy on the vocabularies. Our approach was further improved by combining the knowledge from other level in the sentence: word and alphabet. The additional information further improves the accuracy of our language identification method to 96.36%.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Applying Grapheme, Word, and Syllable Information for Language Identification in Code Switching Sentences\",\"authors\":\"Y. Yeong, T. Tan\",\"doi\":\"10.1109/IALP.2011.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an automatic language identification approach for code switching sentences by using the morphological structures and sequence of the syllable. The approach was tested on Malay-English code switching sentences. The proposed language identification approach achieves 90.75% in term of accuracy on the vocabularies. Our approach was further improved by combining the knowledge from other level in the sentence: word and alphabet. The additional information further improves the accuracy of our language identification method to 96.36%.\",\"PeriodicalId\":297167,\"journal\":{\"name\":\"2011 International Conference on Asian Language Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2011.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们提出了一种利用音节的形态结构和顺序来自动识别语码转换句的方法。该方法在马来语-英语代码转换句中进行了测试。所提出的语言识别方法在词汇上的准确率达到90.75%。我们的方法得到了进一步的改进,将其他层次的知识结合到句子中:单词和字母。这些额外的信息进一步提高了我们的语言识别方法的准确率,达到96.36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Grapheme, Word, and Syllable Information for Language Identification in Code Switching Sentences
In this paper, we propose an automatic language identification approach for code switching sentences by using the morphological structures and sequence of the syllable. The approach was tested on Malay-English code switching sentences. The proposed language identification approach achieves 90.75% in term of accuracy on the vocabularies. Our approach was further improved by combining the knowledge from other level in the sentence: word and alphabet. The additional information further improves the accuracy of our language identification method to 96.36%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信