一种新的基于xai的IMU数据增强生成对抗网络评价

Sara Narteni, V. Orani, Enrico Ferrari, Damiano Verda, E. Cambiaso, M. Mongelli
{"title":"一种新的基于xai的IMU数据增强生成对抗网络评价","authors":"Sara Narteni, V. Orani, Enrico Ferrari, Damiano Verda, E. Cambiaso, M. Mongelli","doi":"10.1109/HealthCom54947.2022.9982780","DOIUrl":null,"url":null,"abstract":"Data augmentation is a widespread innovative technique in Artificial Intelligence: it aims at creating new synthetic data given an existing real baseline, thus allowing to overcome the issues arising from the lack of labelled data for proper training of classification algorithms. Our paper focuses on how a common data augmentation methodology, the Generative Adversarial Networks (GANs), which is widespread for images and timeseries data, can be also applied to generate multivariate data. We propose a novel scheme for GANs evaluation, based on the performance of an explainable AI (XAI) algorithm and an innovative definition of rule similarity. In particular, we will consider an application dealing with the augmentation of Inertial Movement Units (IMU) data for physical fatigue monitoring in two age subgroups (under and over 40 years old) of the original data. We will show how our innovative rule similarity metric can drive the selection of the best fake dataset among a set of different candidates, corresponding to different GAN training runs.","PeriodicalId":202664,"journal":{"name":"2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New XAI-based Evaluation of Generative Adversarial Networks for IMU Data Augmentation\",\"authors\":\"Sara Narteni, V. Orani, Enrico Ferrari, Damiano Verda, E. Cambiaso, M. Mongelli\",\"doi\":\"10.1109/HealthCom54947.2022.9982780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data augmentation is a widespread innovative technique in Artificial Intelligence: it aims at creating new synthetic data given an existing real baseline, thus allowing to overcome the issues arising from the lack of labelled data for proper training of classification algorithms. Our paper focuses on how a common data augmentation methodology, the Generative Adversarial Networks (GANs), which is widespread for images and timeseries data, can be also applied to generate multivariate data. We propose a novel scheme for GANs evaluation, based on the performance of an explainable AI (XAI) algorithm and an innovative definition of rule similarity. In particular, we will consider an application dealing with the augmentation of Inertial Movement Units (IMU) data for physical fatigue monitoring in two age subgroups (under and over 40 years old) of the original data. We will show how our innovative rule similarity metric can drive the selection of the best fake dataset among a set of different candidates, corresponding to different GAN training runs.\",\"PeriodicalId\":202664,\"journal\":{\"name\":\"2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HealthCom54947.2022.9982780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom54947.2022.9982780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据增强是人工智能中广泛使用的创新技术:它旨在在给定现有真实基线的情况下创建新的合成数据,从而克服由于缺乏标记数据而产生的问题,以进行分类算法的适当训练。我们的论文关注的是如何将一种常见的数据增强方法,即生成对抗网络(GANs)应用于图像和时间序列数据,也应用于生成多变量数据。基于可解释AI (XAI)算法的性能和规则相似度的创新定义,我们提出了一种新的gan评估方案。特别是,我们将考虑在原始数据的两个年龄子组(40岁以下和40岁以上)中处理惯性运动单位(IMU)数据增强的物理疲劳监测应用。我们将展示我们创新的规则相似性度量如何在一组不同的候选数据中驱动最佳假数据集的选择,对应于不同的GAN训练运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New XAI-based Evaluation of Generative Adversarial Networks for IMU Data Augmentation
Data augmentation is a widespread innovative technique in Artificial Intelligence: it aims at creating new synthetic data given an existing real baseline, thus allowing to overcome the issues arising from the lack of labelled data for proper training of classification algorithms. Our paper focuses on how a common data augmentation methodology, the Generative Adversarial Networks (GANs), which is widespread for images and timeseries data, can be also applied to generate multivariate data. We propose a novel scheme for GANs evaluation, based on the performance of an explainable AI (XAI) algorithm and an innovative definition of rule similarity. In particular, we will consider an application dealing with the augmentation of Inertial Movement Units (IMU) data for physical fatigue monitoring in two age subgroups (under and over 40 years old) of the original data. We will show how our innovative rule similarity metric can drive the selection of the best fake dataset among a set of different candidates, corresponding to different GAN training runs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信