字符串模式差分挖掘的参数调优

J. Besson, C. Rigotti, I. Mitasiunaite, Jean-François Boulicaut
{"title":"字符串模式差分挖掘的参数调优","authors":"J. Besson, C. Rigotti, I. Mitasiunaite, Jean-François Boulicaut","doi":"10.1109/ICDMW.2008.118","DOIUrl":null,"url":null,"abstract":"Constraint-based mining has been proven to be extremely useful for supporting actionable pattern discovery. However, useful conjunctions of constraints that support domain driven mining tasks generally need to set several parameter values and how to tune these parameters remains fairly open. We study this problem for substring pattern discovery, when using a conjunction of maximal frequency, minimal frequency and size constraints. We propose a method, based on pattern space sampling, to estimate the number of patterns that satisfy such conjunctions. This permits the user to probe the parameter space in many points, and then to choose some initial promising parameter settings. Our empirical validation confirms that we efficiently obtain good approximations of the number of patterns that will be extracted.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Parameter Tuning for Differential Mining of String Patterns\",\"authors\":\"J. Besson, C. Rigotti, I. Mitasiunaite, Jean-François Boulicaut\",\"doi\":\"10.1109/ICDMW.2008.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constraint-based mining has been proven to be extremely useful for supporting actionable pattern discovery. However, useful conjunctions of constraints that support domain driven mining tasks generally need to set several parameter values and how to tune these parameters remains fairly open. We study this problem for substring pattern discovery, when using a conjunction of maximal frequency, minimal frequency and size constraints. We propose a method, based on pattern space sampling, to estimate the number of patterns that satisfy such conjunctions. This permits the user to probe the parameter space in many points, and then to choose some initial promising parameter settings. Our empirical validation confirms that we efficiently obtain good approximations of the number of patterns that will be extracted.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

基于约束的挖掘已被证明对于支持可操作的模式发现非常有用。然而,支持领域驱动挖掘任务的约束的有用连接通常需要设置几个参数值,而如何调整这些参数仍然是相当开放的。当使用最大频率、最小频率和大小约束的结合时,我们研究了子串模式发现问题。我们提出了一种基于模式空间采样的方法来估计满足这些连接的模式的数量。这允许用户在多个点上探测参数空间,然后选择一些有希望的初始参数设置。我们的经验验证证实,我们有效地获得了将被提取的模式数量的良好近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Tuning for Differential Mining of String Patterns
Constraint-based mining has been proven to be extremely useful for supporting actionable pattern discovery. However, useful conjunctions of constraints that support domain driven mining tasks generally need to set several parameter values and how to tune these parameters remains fairly open. We study this problem for substring pattern discovery, when using a conjunction of maximal frequency, minimal frequency and size constraints. We propose a method, based on pattern space sampling, to estimate the number of patterns that satisfy such conjunctions. This permits the user to probe the parameter space in many points, and then to choose some initial promising parameter settings. Our empirical validation confirms that we efficiently obtain good approximations of the number of patterns that will be extracted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信