解决电动汽车的最低能耗和最低二氧化碳排放问题

A. Oceano, G. Rodella, G. Brusaglino, L. D. di Noia, R. Rizzo
{"title":"解决电动汽车的最低能耗和最低二氧化碳排放问题","authors":"A. Oceano, G. Rodella, G. Brusaglino, L. D. di Noia, R. Rizzo","doi":"10.1109/ICCEP.2019.8890221","DOIUrl":null,"url":null,"abstract":"In the view of the general use electric vehicle, totally pollution free during operation, the range extension over the autonomy allowed by the recommended and most effective overnight charge of the battery, should be considered according to the time required to get on board the appropriate energy for the accomplishment of the mission. Two streamlines are possible for vectoring energy to the vehicle in a totally clean mode, feed the traction system: the electricity and the hydrogen. The electricity is generally recognized as a vector showing the highest efficiency and the lowest CO2 production, with reference to the generation based on the mix of the European energy sources, including the renewable ones. A combination of these supply lines for a hybrid battery–fuel cell system is considered and the various aspects of the infrastructures is discussed with an analysis of the parameters impacting the energy transfer, the production of the hydrogen, the type of interfaces for the two lines of supply with respect to the above mentioned features. In particular, the infrastructural solution at the station consisting of electricity supply by magnetic field wireless power transfer and hydrogen produced by electrolysis or by natural gas reforming is considered. In the paper a trade-off scenario is discussed about the use of a Fuel Cell Hydrogen Electric Hybrid externally chargeable system with respect to the energy consumption and CO2 production, considering the double energy supply electricity and hydrogen.","PeriodicalId":277718,"journal":{"name":"2019 International Conference on Clean Electrical Power (ICCEP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Addressing minimum energy consumption and minimum CO2 emission for Electric Mobility\",\"authors\":\"A. Oceano, G. Rodella, G. Brusaglino, L. D. di Noia, R. Rizzo\",\"doi\":\"10.1109/ICCEP.2019.8890221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the view of the general use electric vehicle, totally pollution free during operation, the range extension over the autonomy allowed by the recommended and most effective overnight charge of the battery, should be considered according to the time required to get on board the appropriate energy for the accomplishment of the mission. Two streamlines are possible for vectoring energy to the vehicle in a totally clean mode, feed the traction system: the electricity and the hydrogen. The electricity is generally recognized as a vector showing the highest efficiency and the lowest CO2 production, with reference to the generation based on the mix of the European energy sources, including the renewable ones. A combination of these supply lines for a hybrid battery–fuel cell system is considered and the various aspects of the infrastructures is discussed with an analysis of the parameters impacting the energy transfer, the production of the hydrogen, the type of interfaces for the two lines of supply with respect to the above mentioned features. In particular, the infrastructural solution at the station consisting of electricity supply by magnetic field wireless power transfer and hydrogen produced by electrolysis or by natural gas reforming is considered. In the paper a trade-off scenario is discussed about the use of a Fuel Cell Hydrogen Electric Hybrid externally chargeable system with respect to the energy consumption and CO2 production, considering the double energy supply electricity and hydrogen.\",\"PeriodicalId\":277718,\"journal\":{\"name\":\"2019 International Conference on Clean Electrical Power (ICCEP)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Clean Electrical Power (ICCEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEP.2019.8890221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Clean Electrical Power (ICCEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEP.2019.8890221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

鉴于一般使用的电动汽车,在运行过程中完全无污染,续航里程超过自主性允许的范围,建议和最有效的夜间充电的电池,应考虑根据所需的时间获得适当的能量,以完成任务。两种流线可以在完全清洁的模式下向车辆输送能量,为牵引系统供电:电力和氢气。电力通常被认为是显示最高效率和最低二氧化碳产量的矢量,参考基于欧洲能源组合的发电,包括可再生能源。考虑了混合动力电池-燃料电池系统的这些供应线的组合,并讨论了基础设施的各个方面,分析了影响能量传递的参数,氢气的产生,以及两条供应线的接口类型。特别是考虑了通过磁场无线传输供电和通过电解或天然气重整制氢的基础设施解决方案。考虑到电力和氢气的双重能源供应,本文讨论了燃料电池氢电混合外部充电系统在能源消耗和二氧化碳产生方面的权衡方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing minimum energy consumption and minimum CO2 emission for Electric Mobility
In the view of the general use electric vehicle, totally pollution free during operation, the range extension over the autonomy allowed by the recommended and most effective overnight charge of the battery, should be considered according to the time required to get on board the appropriate energy for the accomplishment of the mission. Two streamlines are possible for vectoring energy to the vehicle in a totally clean mode, feed the traction system: the electricity and the hydrogen. The electricity is generally recognized as a vector showing the highest efficiency and the lowest CO2 production, with reference to the generation based on the mix of the European energy sources, including the renewable ones. A combination of these supply lines for a hybrid battery–fuel cell system is considered and the various aspects of the infrastructures is discussed with an analysis of the parameters impacting the energy transfer, the production of the hydrogen, the type of interfaces for the two lines of supply with respect to the above mentioned features. In particular, the infrastructural solution at the station consisting of electricity supply by magnetic field wireless power transfer and hydrogen produced by electrolysis or by natural gas reforming is considered. In the paper a trade-off scenario is discussed about the use of a Fuel Cell Hydrogen Electric Hybrid externally chargeable system with respect to the energy consumption and CO2 production, considering the double energy supply electricity and hydrogen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信