模糊学习干预方法在嘌呤代谢途径模型中的应用

N. Basha, H. Nounou, M. Nounou
{"title":"模糊学习干预方法在嘌呤代谢途径模型中的应用","authors":"N. Basha, H. Nounou, M. Nounou","doi":"10.1109/MECBME.2014.6783233","DOIUrl":null,"url":null,"abstract":"Adaptive fuzzy control is used here to enforce a concentration level of some metabolite of a biological system representing a purine metabolism pathway model to track a reference trajectory in the presence of uncertainties. In contrast to the direct fuzzy controller, the adaptive fuzzy controller is able to reduce the variance of both the system's response and the controller's output. In this paper, we will apply the adaptive fuzzy intervention strategy to the purine metabolism pathway model in the presence of output noise, which is the source of the model's uncertainties, and carry out a sensitivity analysis of the controller's behavior. The simulation will also be carried out using the direct fuzzy controllers, as described in [1], and the results will be compared and analyzed.","PeriodicalId":384055,"journal":{"name":"2nd Middle East Conference on Biomedical Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a fuzzy learning intervention approach to a purine metabolism pathway model\",\"authors\":\"N. Basha, H. Nounou, M. Nounou\",\"doi\":\"10.1109/MECBME.2014.6783233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive fuzzy control is used here to enforce a concentration level of some metabolite of a biological system representing a purine metabolism pathway model to track a reference trajectory in the presence of uncertainties. In contrast to the direct fuzzy controller, the adaptive fuzzy controller is able to reduce the variance of both the system's response and the controller's output. In this paper, we will apply the adaptive fuzzy intervention strategy to the purine metabolism pathway model in the presence of output noise, which is the source of the model's uncertainties, and carry out a sensitivity analysis of the controller's behavior. The simulation will also be carried out using the direct fuzzy controllers, as described in [1], and the results will be compared and analyzed.\",\"PeriodicalId\":384055,\"journal\":{\"name\":\"2nd Middle East Conference on Biomedical Engineering\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd Middle East Conference on Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECBME.2014.6783233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd Middle East Conference on Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECBME.2014.6783233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这里使用自适应模糊控制来强制一个代表嘌呤代谢途径模型的生物系统的某些代谢物的浓度水平,以在存在不确定性的情况下跟踪参考轨迹。与直接模糊控制器相比,自适应模糊控制器能够减小系统响应和控制器输出的方差。在本文中,我们将自适应模糊干预策略应用于存在输出噪声的嘌呤代谢途径模型,这是模型不确定性的来源,并对控制器的行为进行灵敏度分析。我们还将使用[1]中描述的直接模糊控制器进行仿真,并对结果进行比较和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of a fuzzy learning intervention approach to a purine metabolism pathway model
Adaptive fuzzy control is used here to enforce a concentration level of some metabolite of a biological system representing a purine metabolism pathway model to track a reference trajectory in the presence of uncertainties. In contrast to the direct fuzzy controller, the adaptive fuzzy controller is able to reduce the variance of both the system's response and the controller's output. In this paper, we will apply the adaptive fuzzy intervention strategy to the purine metabolism pathway model in the presence of output noise, which is the source of the model's uncertainties, and carry out a sensitivity analysis of the controller's behavior. The simulation will also be carried out using the direct fuzzy controllers, as described in [1], and the results will be compared and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信