VizRec:一个两阶段的个性化可视化推荐系统

Belgin Mutlu, Eduardo Veas, C. Trattner, V. Sabol
{"title":"VizRec:一个两阶段的个性化可视化推荐系统","authors":"Belgin Mutlu, Eduardo Veas, C. Trattner, V. Sabol","doi":"10.1145/2732158.2732190","DOIUrl":null,"url":null,"abstract":"Identifying and using the information from distributed and heterogeneous information sources is a challenging task in many application fields. Even with services that offer well-defined structured content, such as digital libraries, it becomes increasingly difficult for a user to find the desired information. To cope with an overloaded information space, we propose a novel approach - VizRec - combining recommender systems (RS) and visualizations. VizRec suggests personalized visual representations for recommended data. One important aspect of our contribution and a prerequisite for VizRec are user preferences that build a personalization model. We present a crowd based evaluation and show how such a model of preferences can be elicited.","PeriodicalId":177570,"journal":{"name":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"VizRec: A Two-Stage Recommender System for Personalized Visualizations\",\"authors\":\"Belgin Mutlu, Eduardo Veas, C. Trattner, V. Sabol\",\"doi\":\"10.1145/2732158.2732190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying and using the information from distributed and heterogeneous information sources is a challenging task in many application fields. Even with services that offer well-defined structured content, such as digital libraries, it becomes increasingly difficult for a user to find the desired information. To cope with an overloaded information space, we propose a novel approach - VizRec - combining recommender systems (RS) and visualizations. VizRec suggests personalized visual representations for recommended data. One important aspect of our contribution and a prerequisite for VizRec are user preferences that build a personalization model. We present a crowd based evaluation and show how such a model of preferences can be elicited.\",\"PeriodicalId\":177570,\"journal\":{\"name\":\"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2732158.2732190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2732158.2732190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在许多应用领域,识别和使用来自分布式和异构信息源的信息是一项具有挑战性的任务。即使使用提供定义良好的结构化内容的服务,如数字图书馆,用户也越来越难以找到所需的信息。为了应对过载的信息空间,我们提出了一种将推荐系统(RS)和可视化相结合的新方法——VizRec。VizRec建议对推荐的数据进行个性化的可视化表示。我们贡献的一个重要方面和VizRec的先决条件是构建个性化模型的用户偏好。我们提出了一种基于人群的评估,并展示了这种偏好模型是如何产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VizRec: A Two-Stage Recommender System for Personalized Visualizations
Identifying and using the information from distributed and heterogeneous information sources is a challenging task in many application fields. Even with services that offer well-defined structured content, such as digital libraries, it becomes increasingly difficult for a user to find the desired information. To cope with an overloaded information space, we propose a novel approach - VizRec - combining recommender systems (RS) and visualizations. VizRec suggests personalized visual representations for recommended data. One important aspect of our contribution and a prerequisite for VizRec are user preferences that build a personalization model. We present a crowd based evaluation and show how such a model of preferences can be elicited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信